爱情鸟第一论坛com高清免费_91免费精品国自产拍在线可以看_亚洲一区精品中文字幕_男人操心女人的视频

代寫 CSCI1440/2440 Homework 3

時間:2024-02-16  來源:  作者: 我要糾錯


Homework 3: Myerson’s Lemma CSCI1440/2440

2024-02-08

Due Date: Tuesday, February 20, 2024. 11:59 PM.

We encourage you to work in groups of size two. Each group need only submit one solution. Your submission must be typeset using LATEX. Please submit via Gradescope with you and your partner’s Banner ID’s and which course you are taking.

For 1000-level credit, you need only solve the first three problems. For 2000-level credit, you should solve all four problems.

1 The All-Pay Auction

In an all-pay auction, the good is awarded to the highest bidder, but rather than only the winner paying, all bidders i must pay their bid: i.e., ui = vixi − pi.

Using the envelope theorem, derive (necessary conditions on) the symmetric equilibrium of a symmetric all-pay auction in which the bidders’ values are drawn i.i.d. from some bounded distribution F.

2 Allocation Rule Discontinuity

Fix a bidder i and a profile v−i. Myerson’s lemma tells us that incen-

tive compatibility and individual rationality imply two properties: 1. Allocation monotonicity: one’s allocation should not decrease as

 one’s value vi increases.

2. Myerson’s payment formula:

Z vi 0

pi(vi,v−i) = vixi(vi,v−i)−

xi(z,v−i)dz,

∀i ∈ [n],∀vi ∈ Ti,∀v−i ∈ T−i. (1)

In a second-price auction, the allocation rule is piecewise constant on any continuous interval. That is, bidder i’s allocation function is a Heaviside step function,1 with discontinuity at vi = b∗, where b∗ is the highest bid among all bidders other than i (i.e., b∗ = maxj̸=i vj):

1, if vi ≥ b∗ xi(vi,v−i) =

0, otherwise. Observe that ties are broken in favor of bidder i.

1 This is the canonical step function, whose range is [0, 1].

 

Given this allocation rule, the payment formula tells us what i should pay, should they be fortunate enough to win:

Z vi 0

pi(vi,v−i) = vixi(vi,v−i)−

?Z b∗

xi(z,v−i)dz

=vi(1)−

= vi(1)−(0+vi −b∗)

= b∗.

Alternatively, by integrating along the y-axis (i.e., R f (b) f −1 (y)dy),2

f (a)

bidder i’s payment can be expressed as follows: for ε ∈ (0, 1),

2 As the allocation function, call it f , is not invertible, but is weakly

increasing and right continuous, we define f(−1)(y) = inf{x | f(x) ≥ y}: e.g., f−1(1/2) = b∗.

Z vi ?dx (z,v )? pi(vi,v−i) = z i −i dz

Z ε Z 1−ε ?dxi(z,v−i)? = z(0)dz+ z

Z vi ? 0dz+ ∗ 1dz

0b

homework 3: myerson’s lemma 2

0 dz

0 ε dz 1−ε Z1−ε ∗

= bdy ε

∗ Z 1−ε =b dy ε

= b∗,

because the inverse of the allocation function is b∗, for all y ∈ (0, 1),

and limε→0 R 1−ε dy = 1. Intuitively, we can conclude the following ε

from this derivation: pi(vi, v−i) = b∗ · [jump in xi(·, v−i) at b∗]. Suppose that the allocation rule is piecewise constant on the con-

tinuous interval [0, vi], and discontinuous at points {z1, z2, . . . , zl} in this interval. That is, there are l points at which the allocation jumps from x(zj, v−i) to x(zj+1, v−i) (see Figure 1). Assuming this “jumpy” allocation rule is weakly increasing in value, prove that Myerson’s payment rule can be expressed as follows:

l

pi(vi, v−i) = ∑ zj · ?jump in xi(·, v−i) at zj? . (2) j=1

3 Sponsored Search Extension

In this problem, we generalize our model of sponsored search to include an additional quality parameter βi > 0 that characterizes each bidder i. With this additional parameter, we can view αj as the probability a user views an ad, and βi as the conditional probability that a user then clicks, given that they are already viewing the ad. Note that αj, the view probability, depends only on the slot j, not

Z 1

dz+ z(0)dz

 

xi(z3, v−i) xi(z2, v−i) xi(z1, v−i)

Figure 1: Allocation Rule. Shaded area represents payment.

z1z2 z3 Value, vi

on the advertiser occupying that slot, while βi, the conditional click probablity, explicitly depends on the advertiser i.

In this model, given bids v, bidder i’s utility is given by: ui(v) = βivix(v) − p(v)

So if bidder i is allocated slot j, their utility is: ui(v) = βiviαj − p(v)

Like click probabilities, you should assume qualities are public, not private, information.

1.

2.

4

optimization. The problem can be stated as follows:

There is a knapsack, which can hold a maximum weight of W ≥ 0. There are n items; each item i has weight wi ≤ W and value vi ≥ 0. The goal is to find a subset of items of maximal total value with total weight no more than W.

Written as an integer linear program,

n

max ∑ xivi

x i=1

Define total welfare for this model of sponsored search, and then describe an allocation rule that maximizes total welfare, given the bidders’ reports. Justify your answer.

Argue that your allocation rule is monotonic, and use Myerson’s characterization lemma to produce a payment rule that yields a DSIC mechanism for this sponsored search setting.

The Knapsack Auction

The knapsack problem is a famous NP-hard3 problem in combinatorial

3 There are no known polynomial-time solutions.

homework 3: myerson’s lemma 3

Allocation, xi(vi, v−i)

 

subject to

n

∑xiwi ≤W i=1

xi∈{0,1}, ∀i∈[n]

The key difference between optimization and mechanism design problems is that in mechanism design problems the constants (e.g., vi and wi) are not assumed to be known to the center / optimizer; on the contrary, they must be elicted, after which the optimization problem can then be solved as usual.

With this understanding in mind, we can frame the knapsack problem as a mechanism design problem as follows. Each bidder

has an item that they would like to put in the knapsack. Each item is characterized by two parameters—a public weight wi and a private value vi. An auction takes place, in which bidders report their values. The auctioneer then puts some of the items in the knapsack, and the bidders whose items are selected pay for this privilege. One real- world application of a knapsack auction is the selling of commercial snippets in a 5-minute ad break (e.g., during the Superbowl).4

Since the problem is NP-hard, we are unlikely to find a polynomial- time welfare-maximizing solution. Instead, we will produce a polynomial- time, DSIC mechanism that is a 2-approximation of the optimal wel-

fare. In particular, for any set possible set of values and weights, we

aim to always achieve at least 50% of the optimal welfare.

We propose the following greedy allocation scheme: Sort the bid- ders’ items in decreasing order by their ratios vi/wi, and then allocate items in that order until there is no room left in the knapsack.

1. Show that the greedy allocation scheme is not a 2-approximation by producing a counterexample where it fails to achieve 50% of the optimal welfare.

Alice proposes a small improvement to the greedy allocation scheme. Her improved allocation scheme compares the welfare achieved by the greedy allocation scheme to the welfare achieved

by simply putting the single item of highest value into the knapsack.5 She then uses whichever of the two approaches achieves greater wel- fare. It can be shown that this scheme yields a 2-approximation of optimal welfare. We will use it to create a mechanism that satisfies individual rationality and incentive compatibility.

2. Argue that Alice’s allocation scheme is monotone.

3. Now use Myerson’s payment formula to produce payments such that the resulting mechanism is DSIC and IR.

4 Here, the weight of a commercial is its time in seconds.

homework 3: myerson’s lemma 4

5 Note that weakly greater welfare could be achieved by greedily filling the knapsack with items in decreasing order of value until no more items

fit. We do not consider this scheme, because it is unnecessary to achieve

a 2-approximation; however, it is an obvious heuristic that anyone solving this problem in the real world
請加QQ:99515681  郵箱:99515681@qq.com   WX:codehelp 

標簽:

掃一掃在手機打開當前頁
  • 上一篇:代寫ACP Assignment 1 Specificaons
  • 下一篇:代做ECON 323 Econometric Analysis 2
  • 無相關信息
    昆明生活資訊

    昆明圖文信息
    蝴蝶泉(4A)-大理旅游
    蝴蝶泉(4A)-大理旅游
    油炸竹蟲
    油炸竹蟲
    酸筍煮魚(雞)
    酸筍煮魚(雞)
    竹筒飯
    竹筒飯
    香茅草烤魚
    香茅草烤魚
    檸檬烤魚
    檸檬烤魚
    昆明西山國家級風景名勝區
    昆明西山國家級風景名勝區
    昆明旅游索道攻略
    昆明旅游索道攻略
  • 短信驗證碼平臺 理財 WPS下載

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 kmw.cc Inc. All Rights Reserved. 昆明網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    爱情鸟第一论坛com高清免费_91免费精品国自产拍在线可以看_亚洲一区精品中文字幕_男人操心女人的视频
    <strike id="bfrlb"></strike><form id="bfrlb"><form id="bfrlb"><nobr id="bfrlb"></nobr></form></form>

        <sub id="bfrlb"><listing id="bfrlb"><menuitem id="bfrlb"></menuitem></listing></sub>

          <form id="bfrlb"></form>

            <form id="bfrlb"></form>

              <address id="bfrlb"></address>

              <address id="bfrlb"></address>
              欧美伊人久久| 亚洲免费小视频| 欧美中日韩免费视频| 国产一区二区三区日韩欧美| 国产麻豆综合| 亚洲尤物在线视频观看| 久久一区国产| 一本色道久久综合亚洲二区三区| 午夜精品在线看| 在线看无码的免费网站| 国产精品视频xxxx| 国产欧美精品日韩区二区麻豆天美| 国产精品成人一区| 国产精品自拍三区| 欧美一级大片在线免费观看| 久久久久五月天| 一本不卡影院| 欧美人与性动交a欧美精品| 国产精品国产三级国产专播品爱网| 亚洲国产精品一区二区三区| 欧美日韩亚洲精品内裤| 欧美综合国产| 亚洲小少妇裸体bbw| 欧美视频中文字幕| 久久九九电影| 麻豆国产va免费精品高清在线| 国产精品久久久爽爽爽麻豆色哟哟| 国产偷国产偷亚洲高清97cao| 欧美日韩视频不卡| 亚洲美女91| 欧美人与性动交cc0o| 欧美日韩国产一区精品一区| 欧美人交a欧美精品| 免费看黄裸体一级大秀欧美| 在线一区免费观看| 在线观看一区二区精品视频| 亚洲欧美日韩国产另类专区| 久久九九电影| 久久人人爽爽爽人久久久| 国产精品欧美经典| 国产亚洲a∨片在线观看| 黑人巨大精品欧美黑白配亚洲| 欧美精品性视频| 午夜老司机精品| 激情一区二区| 伊人色综合久久天天| 香蕉久久a毛片| 亚洲欧美中文在线视频| 国产欧美日韩一区二区三区在线| 另类av导航| 亚洲欧美日韩中文播放| 一区二区三区精品视频在线观看| 久久精品欧洲| 亚洲精品在线视频| 亚洲男人的天堂在线| 尤物99国产成人精品视频| 久久久久国色av免费观看性色| 久久一二三国产| 亚洲欧洲一区二区三区久久| 亚洲午夜电影| 国产日韩欧美高清| 欧美三级免费| 国产日韩欧美成人| 欧美日韩中国免费专区在线看| 欧美第一黄网免费网站| 国产一区成人| 宅男噜噜噜66国产日韩在线观看| 国产精品视频午夜| 亚洲精品男同| 免费在线亚洲欧美| 亚洲视频在线观看| 国产综合色在线| 宅男噜噜噜66国产日韩在线观看| 欧美高清不卡| 亚洲第一页在线| 国产精品视频内| 国产精品网红福利| 久久久综合精品| 欧美专区在线观看一区| 亚洲一区二区精品在线观看| 影音先锋久久精品| 亚洲福利专区| 欧美日韩一区二区免费在线观看| 一区二区三区国产精品| 欧美激情综合亚洲一二区| 亚洲人体一区| 欧美日韩免费高清一区色橹橹| 久久中文久久字幕| 欧美11—12娇小xxxx| 久久国产夜色精品鲁鲁99| 欧美日韩亚洲不卡| 猫咪成人在线观看| 亚洲午夜电影| 欧美一区二区播放| 99riav国产精品| 暖暖成人免费视频| 亚洲精选视频免费看| 亚洲一区三区电影在线观看| 欧美色精品在线视频| 欧美精品激情blacked18| 亚洲区第一页| 午夜视频一区在线观看| 欧美精品在线一区| 香蕉成人伊视频在线观看| 国内揄拍国内精品久久| 欧美日韩1区2区3区| 欧美三日本三级三级在线播放| 亚洲第一精品夜夜躁人人躁| 久久精品中文字幕一区二区三区| 欧美大香线蕉线伊人久久国产精品| 久久久成人网| 一区二区电影免费观看| 狠狠操狠狠色综合网| 狠狠色噜噜狠狠狠狠色吗综合| 国产精品午夜春色av| 先锋a资源在线看亚洲| 亚洲精品视频啊美女在线直播| 激情六月婷婷综合| 国产精品99久久久久久久久久久久| 国产精品视屏| 亚洲欧美激情视频| 欧美一区二区三区在线观看视频| 久久激情五月婷婷| 在线视频日本亚洲性| 亚洲国产天堂久久综合| 久久视频精品在线| 久久嫩草精品久久久久| 亚洲国产综合在线| 欧美日韩一区视频| 亚洲一区免费观看| 巨胸喷奶水www久久久免费动漫| 欧美成人免费全部观看天天性色| 国产欧美日韩精品专区| 久久这里有精品视频| 国模精品娜娜一二三区| 欧美精品入口| 欧美一区二区三区四区在线观看| 久久久久久久一区二区三区| 欧美激情亚洲激情| 一区二区不卡在线视频 午夜欧美不卡'| 久久伊人亚洲| 久久精品成人一区二区三区| 亚洲国产精品成人| 欧美风情在线观看| 久久视频一区| 久久久久国色av免费观看性色| 日韩视频亚洲视频| 亚洲午夜精品久久久久久app| 99热这里只有成人精品国产| 噜噜噜久久亚洲精品国产品小说| 欧美韩日亚洲| 国产日韩在线亚洲字幕中文| 亚洲日韩欧美视频一区| 9久草视频在线视频精品| 久久国产精彩视频| 免播放器亚洲一区| 国产在线精品成人一区二区三区| 欧美成人在线网站| 国产最新精品精品你懂的| 快she精品国产999| 免费在线亚洲欧美| 国产精品igao视频网网址不卡日韩| 亚洲欧美国产一区二区三区| 久久九九热免费视频| 精品999在线观看| 国产一区二区三区久久精品| 欧美亚州在线观看| 国产精品成人一区二区三区夜夜夜| 蜜臀av性久久久久蜜臀aⅴ| 欧美精品久久99久久在免费线| 欧美日一区二区在线观看| 红桃视频亚洲| 亚洲一区一卡| 久久精品国产亚洲aⅴ| 欧美在线不卡| 一区在线免费| 午夜欧美理论片| 久久香蕉国产线看观看av| 激情婷婷亚洲| 国产精品va在线| 蜜臀99久久精品久久久久久软件| 一区二区电影免费在线观看| 国色天香一区二区| 亚洲小说欧美另类社区| 亚洲精品综合| 韩日视频一区| 欧美一区二区三区婷婷月色| 欧美www视频在线观看| 欧美日韩中字| 麻豆成人在线观看| 欧美黄色一级视频| 久久综合国产精品台湾中文娱乐网| 欧美日本免费| 亚洲国产精品免费| 欧美日韩成人在线播放| 美女黄毛**国产精品啪啪| 国产一区二区三区四区五区美女| 美女啪啪无遮挡免费久久网站| 亚洲欧美国产日韩天堂区| 欧美国产综合视频|