爱情鸟第一论坛com高清免费_91免费精品国自产拍在线可以看_亚洲一区精品中文字幕_男人操心女人的视频

代做3 D printer materials estimation編程

時間:2024-02-21  來源:  作者: 我要糾錯



Project 1: 3D printer materials estimation
Use the template material in the zip file project01.zip in Learn to write your report. Add all your function
definitions on the code.R file and write your report using report.Rmd. You must upload the following three
files as part of this assignment: code.R, report.html, report.Rmd. Specific instructions for these files are
in the README.md file.
The main text in your report should be a coherent presentation of theory and discussion of methods and
results, showing code for code chunks that perform computations and analysis but not code for code chunks
that generate functions, figures, or tables.
Use the echo=TRUE and echo=FALSE to control what code is visible.
The styler package addin is useful for restyling code for better and consistent readability. It works for both
.R and .Rmd files.
The Project01Hints file contains some useful tips, and the CWmarking file contains guidelines. Both are
attached in Learn as PDF files.
Submission should be done through Gradescope.
1 The data
A 3D printer uses rolls of filament that get heated and squeezed through a moving nozzle, gradually building
objects. The objects are first designed in a CAD program (Computer Aided Design) that also estimates how
much material will be required to print the object.
The data file "filament1.rda" contains information about one 3D-printed object per row. The columns are
• Index: an observation index
• Date: printing dates
• Material: the printing material, identified by its colour
• CAD_Weight: the object weight (in grams) that the CAD software calculated
• Actual_Weight: the actual weight of the object (in grams) after printing
Start by loading the data and plotting it. Comment on the variability of the data for different CAD_Weight
and Material.
2 Classical estimation
Consider two linear models, named A and B, for capturing the relationship between CAD_Weight and
Actual_Weight. We denote the CAD_weight for observation i by xi
, and the corresponding Actual_Weight
by yi
. The two models are defined by
• Model A: yi ∼ Normal[β1 + β2xi
, exp(β3 + β4xi)]
• Model B: yi ∼ Normal[β1 + β2xi
, exp(β3) + exp(β4)x
2
i
)]
The printer operator reasons that random fluctuations in the material properties (such as the density) and
room temperature should lead to a relative error instead of an additive error, leading them to model B as an
approximation of that. The basic physics assumption is that the error in the CAD software calculation of
the weight is proportional to the weight itself. Model A on the other hand is slightly more mathematically
convenient, but has no such motivation in physics.
1
Create a function neg_log_like() that takes arguments beta (model parameters), data (a data.frame
containing the required variables), and model (either A or B) and returns the negated log-likelihood for the
specified model.
Create a function filament1_estimate() that uses the R built in function optim() and neg_log_like()
to estimate the two models A and B using the filament1 data. As initial values for (β1, β2, β3, β4) in the
optimization use (-0.1, 1.07, -2, 0.05) for model A and (-0.15, 1.07, -13.5, -6.5) for model B. The inputs of the
function should be: a data.frame with the same variables as the filament1 data set (columns CAD_Weight
and Actual_Weight) and the model choice (either A or B). As the output, your function should return the
best set of parameters found and the estimate of the Hessian at the solution found.
First, use filament1_estimate() to estimate models A and B using the filament1 data:
• fit_A = filament1_estimate(filament1, “A”)
• fit_B = filament1_estimate(filament1, “B”)
Use the approximation method for large n and the outputs from filament1_estimate() to construct an
approximate 90% confidence intervals for β1, β2, β3, and β4 in Models A and B. Print the result as a table
using the knitr::kable function. Compare the confidence intervals for the different parameters and their width.
Comment on the differences to interpret the model estimation results.
3 Bayesian estimation
Now consider a Bayesian model for describing the actual weight (yi) based on the CAD weight (xi) for
observation i:
yi ∼ Normal[β1 + β2xi
, β3 + β4x
2
i
)].
To ensure positivity of the variance, the parameterisation θ = [θ1, θ2, θ3, θ4] = [β1, β2, log(β3), log(β4)] is
introduced, and the printer operator assigns independent prior distributions as follows:
θ1 ∼ Normal(0, γ1),
θ2 ∼ Normal(1, γ2),
θ3 ∼ LogExp(γ3),
θ4 ∼ LogExp(γ4),
where LogExp(a) denotes the logarithm of an exponentially distributed random variable with rate parameter
a, as seen in Tutorial 4. The γ = (γ1, γ2, γ3, γ4) values are positive parameters.
3.1 Prior density
With the help of dnorm and the dlogexp function (see the code.R file for documentation), define and
document (in code.R) a function log_prior_density with arguments theta and params, where theta is the
θ parameter vector, and params is the vector of γ parameters. Your function should evaluate the logarithm
of the joint prior density p(θ) for the four θi parameters.
3.2 Observation likelihood
With the help of dnorm, define and document a function log_like, taking arguments theta, x, and y, that
evaluates the observation log-likelihood p(y|θ) for the model defined above.
3.3 Posterior density
Define and document a function log_posterior_density with arguments theta, x, y, and params, which
evaluates the logarithm of the posterior density p(θ|y), apart from some unevaluated normalisation constant.
2
3.4 Posterior mode
Define a function posterior_mode with arguments theta_start, x, y, and params, that uses optim together
with the log_posterior_density and filament data to find the mode µ of the log-posterior-density and
evaluates the Hessian at the mode as well as the inverse of the negated Hessian, S. This function should
return a list with elements mode (the posterior mode location), hessian (the Hessian of the log-density at
the mode), and S (the inverse of the negated Hessian at the mode). See the documentation for optim for how
to do maximisation instead of minimisation.
3.5 Gaussian approximation
Let all γi = 1, i = 1, 2, 3, 4, and use posterior_mode to evaluate the inverse of the negated Hessian at the
mode, in order to obtain a multivariate Normal approximation Normal(µ,S) to the posterior distribution for
θ. Use start values θ = 0.
3.6 Importance sampling function
The aim is to construct a 90% Bayesian credible interval for each βj using importance sampling, similarly to
the method used in lab 4. There, a one dimensional Gaussian approximation of the posterior of a parameter
was used. Here, we will instead use a multivariate Normal approximation as the importance sampling
distribution. The functions rmvnorm and dmvnorm in the mvtnorm package can be used to sample and evaluate
densities.
Define and document a function do_importance taking arguments N (the number of samples to generate),
mu (the mean vector for the importance distribution), and S (the covariance matrix), and other additional
parameters that are needed by the function code.
The function should output a data.frame with five columns, beta1, beta2, beta3, beta4, log_weights,
containing the βi samples and normalised log-importance-weights, so that sum(exp(log_weights)) is 1. Use
the log_sum_exp function (see the code.R file for documentation) to compute the needed normalisation
information.
3.7 Importance sampling
Use your defined functions to compute an importance sample of size N = 10000. With the help of
the stat_ewcdf function defined in code.R, plot the empirical weighted CDFs together with the unweighted CDFs for each parameter and discuss the results. To achieve a simpler ggplot code, you may find
pivot_longer(???, starts_with("beta")) and facet_wrap(vars(name)) useful.
Construct 90% credible intervals for each of the four model parameters based on the importance sample.
In addition to wquantile and pivot_longer, the methods group_by and summarise are helpful. You may
wish to define a function make_CI taking arguments x, weights, and prob (to control the intended coverage
probability), generating a 1-row, 2-column data.frame to help structure the code.
Discuss the results both from the sampling method point of view and the 3D printer application point of
view (this may also involve, e.g., plotting prediction intervals based on point estimates of the parameters,
and plotting the importance log-weights to explain how they depend on the sampled β-values).
請加QQ:99515681  郵箱:99515681@qq.com   WX:codehelp 

標簽:

掃一掃在手機打開當前頁
  • 上一篇:代寫game of Bingo cards
  • 下一篇:代寫PLAN60722 – Urban Design Project
  • 無相關信息
    昆明生活資訊

    昆明圖文信息
    蝴蝶泉(4A)-大理旅游
    蝴蝶泉(4A)-大理旅游
    油炸竹蟲
    油炸竹蟲
    酸筍煮魚(雞)
    酸筍煮魚(雞)
    竹筒飯
    竹筒飯
    香茅草烤魚
    香茅草烤魚
    檸檬烤魚
    檸檬烤魚
    昆明西山國家級風景名勝區
    昆明西山國家級風景名勝區
    昆明旅游索道攻略
    昆明旅游索道攻略
  • 短信驗證碼平臺 理財 WPS下載

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 kmw.cc Inc. All Rights Reserved. 昆明網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    爱情鸟第一论坛com高清免费_91免费精品国自产拍在线可以看_亚洲一区精品中文字幕_男人操心女人的视频
    <strike id="bfrlb"></strike><form id="bfrlb"><form id="bfrlb"><nobr id="bfrlb"></nobr></form></form>

        <sub id="bfrlb"><listing id="bfrlb"><menuitem id="bfrlb"></menuitem></listing></sub>

          <form id="bfrlb"></form>

            <form id="bfrlb"></form>

              <address id="bfrlb"></address>

              <address id="bfrlb"></address>
              午夜久久tv| 欧美日韩国产一区精品一区| 亚洲宅男天堂在线观看无病毒| 欧美极品一区| 国产综合色产在线精品| 久久久久99精品国产片| 欧美日韩一区免费| 亚洲午夜精品一区二区三区他趣| 亚洲一区二区三区影院| 国产精品久久久久久久久久直播| 午夜免费久久久久| 日韩一级黄色大片| 99国产精品| 国产日韩欧美三区| 欧美激情视频一区二区三区不卡| 久久亚洲私人国产精品va| 最新高清无码专区| 久久亚洲私人国产精品va| 国产日产亚洲精品系列| 国产精品videossex久久发布| 女仆av观看一区| 欧美日韩亚洲一区在线观看| 欧美一区二区在线视频| 久久精品国产99国产精品澳门| 国产精品播放| 亚洲免费激情| 国产精品免费一区二区三区在线观看| 亚洲美女黄网| 国产日本欧美一区二区三区在线| 久久国产精品电影| 亚洲精品视频一区二区三区| 亚洲与欧洲av电影| 国产婷婷精品| 美女图片一区二区| 国产一区在线看| 久久久久一区| 亚洲欧美综合一区| 久久精品欧美| 免费久久久一本精品久久区| 亚洲欧美成aⅴ人在线观看| 国产日韩欧美综合一区| 亚洲免费在线观看| 亚洲成人在线观看视频| 久久久www成人免费精品| 亚洲三级视频| 国产亚洲精品久久飘花| 久久午夜精品一区二区| 国产一区二区三区黄视频| 国产一区二区三区黄| 久久综合影音| 亚洲一区免费网站| 久久精品国内一区二区三区| 蜜臀av性久久久久蜜臀aⅴ四虎| 麻豆精品一区二区综合av| 国产美女精品人人做人人爽| 中文日韩欧美| 久久精品72免费观看| 亚洲第一搞黄网站| 欧美国产精品中文字幕| 香蕉乱码成人久久天堂爱免费| 国产精品午夜电影| 99视频一区二区三区| 国产婷婷色一区二区三区| 欧美日韩第一页| 久久久国际精品| 亚洲无吗在线| 亚洲天堂网在线观看| 亚洲肉体裸体xxxx137| 精品91久久久久| 久久激情综合网| 国产日韩综合一区二区性色av| 欧美日韩视频专区在线播放| 鲁大师成人一区二区三区| 欧美+日本+国产+在线a∨观看| 亚洲小说区图片区| 国产精品羞羞答答xxdd| 国产亚洲欧美一区在线观看| 韩国成人精品a∨在线观看| 亚洲欧洲av一区二区| 亚洲午夜精品久久久久久app| 亚洲国产婷婷综合在线精品| 欧美激情精品久久久久久变态| aⅴ色国产欧美| 欧美日韩不卡合集视频| 精品999日本| 六月婷婷一区| 欧美亚男人的天堂| 蜜桃av一区二区在线观看| 国产亚洲成av人片在线观看桃| 久久久999成人| 久久精品一二三| 久久精品国产69国产精品亚洲| 亚洲二区三区四区| 国内精品美女在线观看| 一区二区三区免费网站| 尤物yw午夜国产精品视频明星| 国产精品视频久久久| 六十路精品视频| 久久亚洲国产成人| 国产午夜精品麻豆| 国产精品久久久久久久久免费桃花| 欧美黑人一区二区三区| 性娇小13――14欧美| 黄色成人在线观看| 欧美在现视频| 国产精品男人爽免费视频1| 黄色国产精品一区二区三区| 欧美小视频在线| 久久久久久久成人| 欧美三级中文字幕在线观看| 久久精品一区四区| 亚洲精品麻豆| 亚洲人成毛片在线播放女女| 国产精品嫩草影院一区二区| 一区二区三区波多野结衣在线观看| 欧美日韩国产欧| 欧美日韩免费观看一区三区| 伊人成综合网伊人222| 国产日产亚洲精品系列| 午夜精品在线视频| 一区二区三区黄色| 毛片精品免费在线观看| 欧美日韩国产一区二区| 一本色道久久综合亚洲精品高清| 亚洲久久一区| 亚洲欧美日韩成人高清在线一区| 欧美成人中文字幕| 国产精品日韩在线观看| 1024国产精品| 欧美大片在线影院| 夜夜精品视频| 亚洲国产成人午夜在线一区| 一区二区三区四区国产| 一区二区三区四区五区精品视频| 久久亚洲不卡| 亚洲福利一区| 欧美aa国产视频| 亚洲精品在线看| 午夜精品久久一牛影视| 欧美视频在线免费看| 国产精品免费福利| 国产精品在线看| 91久久久国产精品| 欧美xart系列高清| 国产精品视频最多的网站| 欧美成人日本| 国产精品每日更新| 亚洲高清久久久| 久久国产高清| 久久av最新网址| 午夜精品久久久久久久99樱桃| 中文在线不卡视频| 日韩亚洲在线观看| 亚洲欧美在线免费| 国产亚洲欧美一级| 欧美日韩免费在线观看| 99天天综合性| 欧美连裤袜在线视频| 欧美国产在线观看| 亚洲一区二区视频| 韩国在线视频一区| 国产精品成人一区二区网站软件| 亚洲国产精品电影| 亚洲大片在线| 亚欧成人在线| 欧美多人爱爱视频网站| 国内精品视频在线播放| 亚洲一区二区三区四区在线观看| 久久米奇亚洲| 在线成人av| 欧美日韩国产欧美日美国产精品| 性欧美xxxx视频在线观看| 国产一区二区日韩精品欧美精品| 国产美女扒开尿口久久久| 国产精品视频观看| 久热爱精品视频线路一| 欧美福利视频一区| 国产精品99久久久久久www| 欧美日韩国产另类不卡| 国产一区成人| 欧美成人精品| 亚洲影院免费| 欧美体内谢she精2性欧美| 国语自产精品视频在线看一大j8| 欧美a级一区二区| 亚洲精品国产精品乱码不99按摩| 久久婷婷一区| 你懂的成人av| 精品电影在线观看| 欧美日韩高清一区| 在线亚洲欧美专区二区| 国产精品嫩草影院av蜜臀| 亚洲精品色婷婷福利天堂| 红桃视频国产精品| 亚洲免费视频成人| 欧美中文字幕视频| 亚洲视频中文| 欧美日韩成人在线| 欧美精品 国产精品| 夜夜嗨av色一区二区不卡|