爱情鸟第一论坛com高清免费_91免费精品国自产拍在线可以看_亚洲一区精品中文字幕_男人操心女人的视频

代寫DTS101TC Introduction to Neural Networks Coursework

時間:2024-03-01  來源:  作者: 我要糾錯


Due: Sunday Apr.21th, 2024 @ 17:00

Weight: 100%

Overview

This coursework is the sole assessment for DTS101TC and aims to evaluate your compre-hension of the module. It consists of three sections: 'Short Answer Question', 'Image Classification Programming', and 'Real-world Application Question'. Each question must be answered as per the instructions provided in the assignment paper. The programming task necessitates the use of Python with PyTorch within a Jupyter Notebook environment, with all output cells saved alongside the code.

Learning Outcomes

A.   Develop an understanding of neural networks  –  their architectures, applications  and limitations.

B.   Demonstrate the ability to implement neural networks with a programming language

C.   Demonstrate the  ability to provide critical analysis on real-world problems and design suitable solutions based on neural networks.

Policy

Please save your assignment in a PDF document, and package your code as a ZIP file. If there are any errors in the program, include debugging information. Submit both the answer sheet and the ZIP code file via Learning Mall Core to the appropriate drop box. Electronic submission is the only method accepted; no hard copies will be accepted.

You must download your file and check that it is viewable after submission. Documents may become  corrupted  during  the  uploading  process  (e.g.  due  to  slow  internet  connections). However, students themselves are responsible for submitting a functional and correct file for assessments.

Avoid Plagiarism

.     Do NOT submit work from others.

.     Do NOT share code/work with others.

.     Do NOT copy and paste directly from sources without proper attribution.

.     Do NOT use paid services to complete assignments for you.

Q1. Short Answer Questions [40 marks]

The questions test general knowledge and understanding of central concepts in the course. The answers should be short. Any calculations need to be presented.

1.  (a.)  Explain the concept of linear separability. [2 marks]

(b.)  Consider the following data points from two categories: [3 marks]

X1  : (1, 1)    (2, 2)    (2, 0);

X2  : (0, 0)    (1, 0)    (0, 1).

Are they linearly separable? Make a sketch and explain your answer.

2.  Derive the gradient descent update rule for a target function represented as

od  = w0 + w1 x1 + ... + wnxn

Define the squared error function first, considering a provided set of training examples D, where each training example d ∈ D is associated with the target output td. [5 marks]

3.  (a.)  Draw a carefully labeled diagram of a 3-layer perceptron with 2 input nodes, 3 hidden nodes, 1 output node and bias nodes. [5 marks]

(b.)  Assuming that the activation functions are simple threshold, f(y) = sign(y), write down the input- output functional form of the overall network in terms of the input-to-hidden weights, wab , and the hidden-to-output weights, ˜(w)bc. [5 marks]

(c.)  How many distinct weights need to be trained in this network? [2 marks]

(d.)  Show that it is not possible to train this network with backpropagation. Explain what modification is necessary to allow backpropagation to work. [3 marks]

(e.)  After you modified the activation function, using the chain rule, calculate expressions for the fol- lowing derivatives

(i.) ∂J/∂y / (ii.) ∂J/∂˜(w)bc

where J is the squared error, and t is the target. [5 marks]

4.  (a.)  Sketch a simple recurrent network, with input x, output y, and recurrent state h. Give the update equations for a simple RNN unit in terms of x, y, and h. Assume it usestanh activation. [5 marks]

(b.)  Name one example that can be more naturally modeled with RNNs than with feedforward neural networks?  For a dataset X := (xt ,yt )1(k), show how information is propagated by drawing a feed-

forward neural network that corresponds to the RNN from the figure you sketch for k = 3.  Recall that a feedforward neural network does not contain nodes with a persistent state. [5 marks]

Q2. Image Classification Programming [40 marks]

For this  question,  you  will  build your  own image  dataset  and  implement a neural network  by Pytorch.   The question is split in a number of steps.  Every  step  gives you some marks.  Answer the  questions for  each step and include the screenshot of code  outputs  in your answer sheet.

- Language and Platform Python  (version  3.5  or  above)  with  Pytorch  (newest  version). You  may  use any libraries available on Python platform, such as numpy, scipy, matplotlib, etc.  You need to run the code in the jupyter notebook.

- Code Submission All of your dataset,  code  (Python files and ipynb files) should be  a package in a single ZIP file,  with  a PDF of your IPython  notebook with  output cells. INCLUDE your dataset in the zip file.

1. Dataset Build [10 marks]

Create an image dataset for classification with 120 images ( ‘.jpg’  format), featuring at least two cate- gories. Resize or crop the images to a uniform size of 128 × 128 pixels.  briefly describe the dataset you constructed.

2. Data Loading [10 marks]

Load your dataset, randomly split the set into training set (80 images), validation set (20 images) and test set (20 images).

For the training set, use python commands to display the number of data entries, the number of classes, the number of data entries for each classes, the shape of the image size.  Randomly plot 10 images in the training set with their corresponding labels.

3. Convolutional Network Model Build [5 marks]

//  pytorch .network

class  Network(nn.Module):

def  __init__ (self,  num_classes=?):

super(Network,  self).__init__ ()

self.conv1  =  nn.Conv2d(in_channels=3,  out_channels=5,  kernel_size=3,  padding=1) self.pool  =  nn.MaxPool2d(2,  2)

self.conv2  =  nn.Conv2d(in_channels=5,  out_channels=10,  kernel_size=3,  padding=1) self.fc1  =  nn.Linear(10  *  5  *  5,  100)

self.fc2  =  nn.Linear(100,  num_classes)

def  forward(self,  x):

x  =  self.pool(F.relu(self.conv1(x)))

x  =  self.pool(F.relu(self.conv2(x)))

x  =  x.view(-1,  10  *  5  *  5)

x  =  self.fc1(x)

x  =  self.fc2(x)

return  x

Implement Network, and complete the form below according to the provided Network. Utilize the symbol ‘-’ to represent sections that do not require completion. What is the difference between this model and AlexNet?

Layer

# Filters

Kernel Size

Stride

Padding

Size of

Feature Map

Activation Function

Input

Conv1


ReLU

MaxPool

Conv2


ReLU

FC1


-

-

-


ReLU

FC2


-

-

-

4. Training [10 marks]

Train the above Network at least 50 epochs. Explain what the lost function is, which optimizer do you use, and other training parameters, e.g., learning rate, epoch number etc.  Plot the training history, e.g., produce two graphs (one for training and validation losses, one for training and validation accuracy) that each contains 2 curves. Have the model converged?

5. Test [5 marks]

Test the trained model on the test set.  Show the accuracy and confusion matrix using python commands.

Q3. Real-world Application Questions [20 marks]

Give ONE specific  real-world problem  that  can  be  solved  by  neural networks.   Answer  the  questions  below (answer to  each  question should not  exceed 200 words) .

1.  Detail the issues raised by this real-world problem, and explain how neural networks maybe used to address these issues. [5 marks]

2.  Choose an established neural network to tackle the problem.  Specify the chosen network and indicate the paper in which this model was published. Why you choose it? Explain. [5 marks]

3.  How to collect your training data?  Do you need labeled data to train the network?  If your answer is yes, 請加QQ:99515681  郵箱:99515681@qq.com   WX:codehelp 

標簽:

掃一掃在手機打開當前頁
  • 上一篇:代做代寫COMPSCI 4091 Advanced Networked Systems
  • 下一篇:CSCI 2033代做、代寫Python, C++/Java編程
  • 無相關信息
    昆明生活資訊

    昆明圖文信息
    蝴蝶泉(4A)-大理旅游
    蝴蝶泉(4A)-大理旅游
    油炸竹蟲
    油炸竹蟲
    酸筍煮魚(雞)
    酸筍煮魚(雞)
    竹筒飯
    竹筒飯
    香茅草烤魚
    香茅草烤魚
    檸檬烤魚
    檸檬烤魚
    昆明西山國家級風景名勝區
    昆明西山國家級風景名勝區
    昆明旅游索道攻略
    昆明旅游索道攻略
  • 短信驗證碼平臺 理財 WPS下載

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 kmw.cc Inc. All Rights Reserved. 昆明網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    爱情鸟第一论坛com高清免费_91免费精品国自产拍在线可以看_亚洲一区精品中文字幕_男人操心女人的视频
    <strike id="bfrlb"></strike><form id="bfrlb"><form id="bfrlb"><nobr id="bfrlb"></nobr></form></form>

        <sub id="bfrlb"><listing id="bfrlb"><menuitem id="bfrlb"></menuitem></listing></sub>

          <form id="bfrlb"></form>

            <form id="bfrlb"></form>

              <address id="bfrlb"></address>

              <address id="bfrlb"></address>
              国产亚洲欧美中文| 激情欧美一区二区三区| 欧美一区二区三区婷婷月色| 欧美成人性生活| 久久亚洲一区| 欧美成在线视频| 欧美国产大片| 欧美激情视频一区二区三区不卡| 欧美一级夜夜爽| 激情欧美日韩| av成人手机在线| 欧美天堂在线观看| 国产精品a久久久久久| 欧美日本国产| 欧美高清视频| 国产性猛交xxxx免费看久久| 国产精品亚洲片夜色在线| 亚洲私拍自拍| 亚洲女ⅴideoshd黑人| 国产在线国偷精品产拍免费yy| 亚洲欧美国产不卡| 欧美成人小视频| 欧美日韩另类字幕中文| 亚洲一区二区动漫| 欧美成人tv| 欧美日韩1区2区| 亚洲第一在线综合在线| 国产精品亚洲аv天堂网| 欧美一级艳片视频免费观看| 亚洲精品视频在线| 性欧美长视频| 欧美区高清在线| 国产精品青草久久久久福利99| 亚洲精品精选| 国产亚洲一区在线| 欧美怡红院视频一区二区三区| 亚洲欧美精品在线观看| 亚洲电影欧美电影有声小说| 国产精品专区一| 国精产品99永久一区一区| 在线观看日韩av先锋影音电影院| 蜜桃精品久久久久久久免费影院| 在线观看91精品国产麻豆| 91久久精品国产91久久性色tv| 国产日韩欧美日韩| 久久夜色精品国产亚洲aⅴ| 国产小视频国产精品| 欧美日韩中文字幕综合视频| 欧美三日本三级少妇三2023| 亚洲精品国产拍免费91在线| 久久国产精品久久精品国产| 国产精品欧美一区二区三区奶水| 久久精品国产亚洲5555| 国产精品欧美一区二区三区奶水| 免费欧美日韩国产三级电影| 久久天天狠狠| 久久日韩粉嫩一区二区三区| 99精品视频一区二区三区| 亚洲国产成人精品女人久久久| 亚洲国产人成综合网站| 日韩视频在线一区二区| 欧美日韩第一区| 在线观看91精品国产入口| 亚洲精品欧美日韩| 欧美日韩国产综合视频在线观看中文| 欧美视频精品一区| 黄色资源网久久资源365| 欧美一区永久视频免费观看| 亚洲电影激情视频网站| 亚洲综合国产精品| 欧美日一区二区三区在线观看国产免| 一区二区三区在线视频播放| 老司机精品福利视频| 一区二区三区在线视频观看| 欧美日韩亚洲精品内裤| 欧美精品精品一区| 亚洲国产婷婷综合在线精品| 国内精品久久久久影院薰衣草| 羞羞漫画18久久大片| 亚洲国产精品传媒在线观看| 亚洲欧美日本日韩| 在线看一区二区| 一本久久综合| 国产综合久久| 亚洲精品免费在线观看| 一个色综合导航| 欧美一区二粉嫩精品国产一线天| 欧美精品v日韩精品v韩国精品v| 久热综合在线亚洲精品| 国产精品女主播一区二区三区| 91久久嫩草影院一区二区| 一色屋精品视频在线观看网站| 性欧美1819sex性高清| 欧美成人四级电影| 国产又爽又黄的激情精品视频| 黄色一区二区在线| 一本色道**综合亚洲精品蜜桃冫| 欧美日韩精品在线| 欧美激情一区二区三区成人| 欧美一区二区三区婷婷月色| 欧美性感一类影片在线播放| 午夜精品久久久久久99热| 亚洲一区国产视频| 国产精品久久久久久久久久三级| 亚洲国产精品一区二区www在线| 欧美日韩精品福利| 欧美激情一区在线| 亚洲一区二区黄色| 亚洲高清成人| 欧美一区二区三区在线观看| 欧美日韩午夜在线视频| 欧美一级免费视频| 欧美va亚洲va国产综合| 一区二区电影免费在线观看| 欧美大成色www永久网站婷| 午夜精品久久久久久久蜜桃app| 国产精品视频福利| 欧美日在线观看| 久久精品观看| 欧美在线视频a| 亚洲高清成人| 欧美精品亚洲一区二区在线播放| 欧美日韩一区二区三区免费看| 欧美性生交xxxxx久久久| 一本色道久久综合亚洲二区三区| 乱中年女人伦av一区二区| 欧美日韩精品久久久| 亚洲福利一区| 亚洲影院高清在线| 亚洲黄色成人久久久| 国产日韩欧美视频在线| 久久成人精品电影| 久久综合中文色婷婷| 午夜在线视频一区二区区别| 午夜在线视频一区二区区别| 国产欧美日韩精品丝袜高跟鞋| 亚洲欧美日韩精品久久奇米色影视| 国产亚洲一区二区精品| 亚洲天堂av图片| 欧美视频免费| 欧美区高清在线| 国内外成人免费激情在线视频| 免费看亚洲片| 亚洲国产中文字幕在线观看| 在线观看欧美黄色| 欧美综合国产精品久久丁香| 欧美四级伦理在线| 国产亚洲一本大道中文在线| 1024欧美极品| 亚洲视频1区2区| 欧美精品一区二区三区在线播放| 欧美一区二区三区免费视频| 欧美激情自拍| 亚洲影院一区| 欧美在现视频| 欧美一区二区免费观在线| 国产精品激情av在线播放| 欧美freesex8一10精品| 国产精品免费观看视频| 亚洲一区观看| 国产精品免费观看在线| 亚洲日本成人女熟在线观看| 亚洲欧洲一区二区三区在线观看| 国产日韩亚洲| av成人免费| 欧美韩国一区| 伊伊综合在线| 国产欧美三级| 伊人久久综合97精品| 美女诱惑黄网站一区| 黑人一区二区| 国产在线拍揄自揄视频不卡99| 久久国产精品99精品国产| 免费短视频成人日韩| 亚洲人成欧美中文字幕| 99国产精品久久久久老师| 欧美日韩三区四区| 亚洲视频在线观看三级| 国产精品色午夜在线观看| 日韩午夜精品| 国产精品网站在线播放| 在线观看亚洲一区| 欧美日韩亚洲一区三区| 久久亚洲一区| 亚洲毛片在线观看| 欧美日本乱大交xxxxx| 国产欧美一区二区三区在线看蜜臀| 国产精品视频在线观看| 99国内精品久久久久久久软件| 亚洲剧情一区二区| 久久在精品线影院精品国产| 欧美一区二区三区在线看| 国产亚洲一级高清| 久久亚洲精品中文字幕冲田杏梨| 欧美精品1区2区3区| 美女在线一区二区| 久久综合电影一区| 欧美另类99xxxxx| 久久久欧美精品sm网站| 欧美午夜视频网站|