爱情鸟第一论坛com高清免费_91免费精品国自产拍在线可以看_亚洲一区精品中文字幕_男人操心女人的视频

代做EL2106  、代寫Signals and Systems    

時間:2024-03-09  來源:  作者: 我要糾錯



Academic Year: 2023/24
Assessment Introduction: 
Course: 
BEng (Hons) Electronic Engineering    Module Code: EL2106        
Module Title: Signals and Systems    

Title of the Brief: 
Fourier Series for Synthesis and Analysis of Periodic Signals    Type of assessment: Coursework

This Assessment Pack consists of a detailed assignment brief, guidance on what you need to prepare, and information on how class sessions support your ability to complete successfully. You’ll also find information on this page to guide you on how, where, and when to submit. If you need additional support, please make a note of the services detailed in this document. 

How, when, and where to submit:
The deadline for this assessment is 22nd March 2024 at 23.59 via the submission zone found the EL2106 Blackboard area - Please note that this is the final time you can submit – not the time to submit!
Your work needs to be submitted via the Turnitin link on Blackboard, the link will be visible to you on: 12th December 2023 
Feedback will be provided by: 26th April 2024
You should aim to submit your assessment in advance of the deadline.
Note: If you have any valid mitigating circumstances that mean you cannot meet an assessment submission deadline and you wish to request an extension, you will need to apply online, via MyUCLan with your evidence prior to the deadline. Further information on Mitigating Circumstances via this link.
We wish you all success in completing your assessment. Read this guidance carefully, and any questions, please discuss with your Module Leader or module team. 

Additional Support available: 
All links are available through the online Student Hub
1.Academic support for this assessment will be provided by contacting Wei Quan WQuan@uclan.ac.uk 
2.Our Library resources link can be found in the library area of the Student Hub or via your subject librarian at SubjectLibrarians@uclan.ac.uk. 
3.Support with your academic skills development (academic writing, critical thinking and referencing) is available through WISER on the Study Skills section of the Student Hub.
4.For help with Turnitin, see Blackboard and Turnitin Support on the Student Hub 
5.If you have a disability, specific learning difficulty, long-term health or mental health condition, and not yet advised us, or would like to review your support, Inclusive Support can assist with reasonable adjustments and support. To find out more, you can visit the Inclusive Support page of the Student Hub.
6.For mental health and wellbeing support, please complete our online referral form, or email wellbeing@uclan.ac.uk. You can also call 01772 893020, attend a drop-in, or visit our UCLan Wellbeing Service  Student Hub pages for more information.
7.For any other support query, please contact Student Support via studentsupport@uclan.ac.uk. 
8.For consideration of Academic Integrity, please refer to detailed guidelines in our policy document . All assessed work should be genuinely your own work, and all resources fully cited.  
9.For this assignment, you are not permitted to use any category of AI tools.

Preparing for your assignment.
Ensure that you fully understand the requirements for the assessment and what you are expected to complete. The assignment will be introduced in the lecture session where you can ask any questions, you can also ask for clarification by contacting the module team.

The following module learning outcomes will be assessed in this assignment: 

Use time domain and frequency-domain representations of signals and systems to analyse signal and system characteristics and system responses graphically and mathematically. 
Implement relevant processing techniques, such as Fourier analysis and s-plane analysis, using software tools such as spreadsheets or MATLAB, and demonstrate an understanding of the practical results acquired from the software-based implementations.


Please read over the guide to writing a technical document https://www.theiet.org/media/5182/technical-report-writing.pdf and ensure that you fully understand the requirements of the assessment. There will be a lecture session on the assignment and writing a technical document. 

Ensure that you research and read into the subject area before writing the report so that you have a good background understanding to the subject area.


Assignment Brief

For all stages, select appropriate ranges (time, frequency etc.) for the plots to show the appropriate features of the signals and spectra.  Label both axes on all plots.  Throughout this assignment, the sampling frequency for all signals should be 200 kHz. 
 
1)Periodic Discrete-Time Signal Generation (25 marks) 
Generate a set of discrete-time sinusoids using MATLAB.  The signals should have a specified amplitude and phase (your choices, you may decide to experiment with these), and a frequency as specified below.  Plot the sample values against time and observe the resulting waveform.  Use a suitable time range so as to show the relevant features of the signal.  Comment on whether the observed waveform corresponds to the expected waveform and explain any significant differences. (HINT: a key word that you may wish to investigate and explain is ‘aliasing’). 

Use the following values (individually) for the frequency of the sinusoid: 1 kHz, 10 kHz, 45 kHz, 55 kHz, 90 kHz, 99 kHz. 

2)Fourier Synthesis for Periodic Signals (25 marks) 
Synthesise periodic signals using MATLAB, each with a fundamental frequency of 100 Hz, using a d.c. component (a0), and a sum of ‘cos’ terms (with amplitudes given by the ak coefficients) and ‘sin’ terms (with amplitudes given by the bk coefficients).  Repeat the synthesis of these signals using MATLAB. 

The synthesis equation is: 


The ak and bk coefficients should be selectable by the user, and the signals should be synthesised with two different harmonic ranges: 

(a) from d.c. up to and including the 10th harmonic (i.e. N = 10). 

(b) from d.c. up to and including the 30th harmonic (i.e. N = 30). 

Use the MATLAB program created above, with the two harmonic ranges, to synthesise the following signals: 
(i)A signal f1(t) of fundamental frequency 200 Hz for which a0 = 5 V, and ak and bk are defined by the 
equations below:

                  

(ii)An approximation of square wave of amplitude 10 V and fundamental frequency 200 Hz, for which you should identify formulae for a0, ak and bk using Fourier series analysis as discussed in the EL2106 classes. 



3)Fourier Analysis for Quasi-Periodic Signals (40 marks) 
A different sampled signal will be provided (by another MAT file) to each student on or before 23rd January 2024.  The signal has frequency 250 Hz, sampled at 100 kHz.  Three practice signals (periodic and quasi-periodic) are available on Blackboard.  Each file will contain 2000 samples of the signal, covering five cycles of the quasi-periodic signal (400 points per cycle).  Note that slight differences are apparent between each ‘cycle’ of the quasi-periodic signals. 

(a) Create a MATLAB program to perform Fourier analysis of the signal from d.c. up to and including the 20th harmonic.  The analysis should include all 2000 points provided, but the calculations should be based on the correct fundamental frequency (i.e. 1 cycle is specified by 400 points corresponding to a fundamental frequency of 250 Hz).  Include in your report a table listing the magnitude (Fk) and phase (φk) of each of the 25 frequency components.  Evaluate the d.c. component of the signal and identify the six dominant a.c. frequency components (i.e. those with the four largest magnitudes) present in your signal. 

(b) Synthesise the signal using only the d.c. value and the six dominant frequency components, using the magnitude and phase values obtained from your analysis. 

(c) Subtract the synthesised signal from part (b) from the original signal (provided) and observe and explain the resulting difference signal.  Calculate the RMS value of the difference signal and express this as a value in dB relative to the RMS value (over all five cycles) of the original signal provided.


Word limit: A maximum of 1000 words (see notes below for further information).

Technical Report Writing

To complete the report, you will have to thoroughly research the area using reliable sources and precisely reference where your information and statements are from. The aim of the report is to be clear, concise and convey technical information to the reader, note that the reader is familiar and experienced in the area. Ensure that you write your report for this audience. 

A guide on writing a technical document can be found at the following (this will also be uploaded to blackboard): 

https://www.theiet.org/media/5182/technical-report-writing.pdf

Please read over the above document to ensure that you are clear on what a technical report is and know what you are required to complete, note the above is a guide not an explicit standard you will be required to ensure that your technical report contains the relevant information presented correctly for the reader.

Ensure that you research and read into the subject area before writing the report so that you have a good background understanding to the subject area. You will need to provide a short report, which shows the calculation of each tasks in Marking Criteria and Weighting section below with an appropriate assumption, description and comments, no longer than 1,000 words. You should use the guideline below to structure your report. For the final reporting submission, make sure that each page is marked with the date of completion, the page number, and the total number of pages submitted.  Make sure that the front page of your submission has this information displayed prominently along with the module name and number and assignment title. Submit your reporting material with a single Word file through EL2106 Blackboard submission link with Matlab code attached in the back of the file. Your work must be referenced using Harvard Referencing system available here: https://v3.pebblepad.co.uk/v3portfolio/uclan/Asset/View/Gm3mmGk6sM3RgHZnjGfh7mm6pM. 

Further information to support your development will be available to view on assignment briefing session and Blackboard.



Notes on Wordcount and Referencing

For good marks and given the limited wordcount you should produce work that is: accurate; thorough; well-argued; clear; accurately referenced; relevant and written in correct (UK) English grammar and spelling. You may include figures and tables with short captions (25 words each) and a list of references without affecting the overall word count. Remember that you have limited words so ensure that you “stick to the point” and do not get into detail on superficial elements. 

Ensure that you include references when discussing technical facts and statements on the technology used. You must reference all your sources of information. These should be cited in the appropriate part of the report and fully identified to meet the Harvard referencing standard in a list at the end. Website articles must be properly referenced to be considered as legitimate references.


Presentation of assignment work

Except where specifically stated in the assignment brief, assignment work submissions should be word-processed, in Microsoft Word format, with a footer comprising: your module code; date; page number. Your work needs to be submitted via the Turnitin link on Blackboard.

The following module learning outcomes will be assessed in this assignment: 
Use time domain and frequency-domain representations of signals and systems to analyse signal and system characteristics and system responses graphically and mathematically. 
Implement relevant processing techniques, such as Fourier analysis and s-plane analysis, using software tools such as spreadsheets or MATLAB, and demonstrate an understanding of the practical results acquired from the software-based implementations.
Marking Criteria and Weighting
Your submission will be marked in accordance with the following marking scheme:
Item    Weight (%)    Model answer criteria
1.Periodic Discrete-Time Signal Generation    25    Neat diagram, clearly presenting the waveforms in MATLAB with appropriate descriptions and comments on the waveforms generated.
2.Fourier Synthesis for Periodic Signals    25    Concise and accurate demonstration on the process of calculation for the synthesised signals, appropriately referenced for the formula where required.
3.Fourier Analysis for Quasi-Periodic Signals    40    Concise and accurate demonstration on the process of calculation for the given signal/waveform. Accurate description of the results of calculation. Neat diagram for presenting the synthesised signals in MATLAB. 
4.Presentation    10    Presentation requirements met in full. Concise, complete and well-structured documentation with correct use of English throughout.  Neat diagrams, clearly presented.  Contents page and page numbers.
Total    100    

Feedback Guidance:
Reflecting on Feedback: how to improve.
From the feedback you receive, you should understand:
The grade you achieved.
The best features of your work.
Areas you may not have fully understood.
Areas you are doing well but could develop your understanding. 
What you can do to improve in the future - feedforward.

Use the WISER: Academic Skills Development service. WISER can review feedback and help you understand your feedback. You can also use the WISER Feedback Glossary
Next Steps:
List the steps have you taken to respond to previous feedback.
Summarise your achievements 
Evaluate where you need to improve here (keep handy for future work):
請加QQ:99515681  郵箱:99515681@qq.com   WX:codehelp 

標簽:

掃一掃在手機打開當前頁
  • 上一篇:代寫B31DG、代做C/C++程序語言
  • 下一篇:CSC8208代做、代寫Java/c++編程設計
  • 無相關信息
    昆明生活資訊

    昆明圖文信息
    蝴蝶泉(4A)-大理旅游
    蝴蝶泉(4A)-大理旅游
    油炸竹蟲
    油炸竹蟲
    酸筍煮魚(雞)
    酸筍煮魚(雞)
    竹筒飯
    竹筒飯
    香茅草烤魚
    香茅草烤魚
    檸檬烤魚
    檸檬烤魚
    昆明西山國家級風景名勝區
    昆明西山國家級風景名勝區
    昆明旅游索道攻略
    昆明旅游索道攻略
  • 短信驗證碼平臺 理財 WPS下載

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 kmw.cc Inc. All Rights Reserved. 昆明網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    爱情鸟第一论坛com高清免费_91免费精品国自产拍在线可以看_亚洲一区精品中文字幕_男人操心女人的视频
    <strike id="bfrlb"></strike><form id="bfrlb"><form id="bfrlb"><nobr id="bfrlb"></nobr></form></form>

        <sub id="bfrlb"><listing id="bfrlb"><menuitem id="bfrlb"></menuitem></listing></sub>

          <form id="bfrlb"></form>

            <form id="bfrlb"></form>

              <address id="bfrlb"></address>

              <address id="bfrlb"></address>
              欧美三级免费| 亚洲在线一区二区三区| 久久久九九九九| 欧美一区免费| 欧美日韩一区二区免费视频| 亚洲精品一区二区三区婷婷月| 亚洲欧美日韩在线一区| 亚洲国产日韩欧美一区二区三区| 国产一区三区三区| 国产精品二区在线观看| 欧美精品日韩| 亚洲深夜影院| 欧美日韩国产首页| 亚洲国产日韩欧美综合久久| 国产综合久久久久久鬼色| 欧美sm重口味系列视频在线观看| 怡红院精品视频| 亚洲欧美日韩一区二区三区在线| 欧美日韩一卡二卡| 亚洲淫性视频| 国产伦精品一区二区三区高清| 免费亚洲一区二区| 欧美国产一区二区在线观看| 亚洲国产精品尤物yw在线观看| 欧美一区在线看| 麻豆精品一区二区av白丝在线| 亚洲午夜一二三区视频| 国产精品一区二区三区免费观看| 久久噜噜噜精品国产亚洲综合| 国产精品激情av在线播放| 国产精品久久国产三级国电话系列| 亚洲国产精品成人一区二区| 99在线观看免费视频精品观看| 国产精品丝袜白浆摸在线| 红桃视频一区| 久久久久国色av免费观看性色| 午夜精品久久久久久久白皮肤| 国产在线精品二区| 欧美精品午夜视频| 欧美国产日韩一区二区在线观看| 久久久久久久久久久久久久一区| 日韩午夜视频在线观看| 亚洲少妇诱惑| 正在播放欧美一区| 欧美精品电影| 在线精品亚洲一区二区| 欧美一区二区在线免费观看| 国产精品久久国产精品99gif| 国产在线精品二区| 国产一区白浆| 国产精品三级视频| 亚洲图片你懂的| 欧美在线观看视频| 国产一区视频在线看| 欧美成人免费一级人片100| 国产日韩精品一区二区三区| 亚洲少妇最新在线视频| 合欧美一区二区三区| 女主播福利一区| 亚洲三级性片| 欧美国产日韩一区二区三区| 欧美日韩一区二区三区视频| 精品成人在线观看| 欧美国产精品日韩| 亚洲精品黄色| 欧美日韩国产成人在线91| 久久久久久久久久久成人| 在线成人免费观看| 欧美成人精品1314www| 亚洲一区二区三区在线观看视频| 欧美性视频网站| 国产精品视频午夜| 欧美日韩第一页| 国产精品一区二区在线观看| 在线播放日韩| 亚洲一区二三| 在线综合亚洲欧美在线视频| 国产亚洲毛片| 夜夜爽夜夜爽精品视频| 欧美美女福利视频| 亚洲国产精选| 亚洲大片一区二区三区| 久久久久国产精品麻豆ai换脸| 欧美网站在线观看| 亚洲精品一二区| 国产精品嫩草影院av蜜臀| 激情成人av在线| 欧美精品在线免费播放| 国模精品娜娜一二三区| 久久综合久久综合这里只有精品| 国产精品看片资源| 国产欧美在线| 嫩草影视亚洲| 99精品国产高清一区二区| 欧美视频日韩视频在线观看| 亚洲一区二区视频在线观看| 蜜臀av性久久久久蜜臀aⅴ四虎| 欧美日韩国产美| 欧美色精品天天在线观看视频| 欧美日在线观看| 狠狠v欧美v日韩v亚洲ⅴ| 国产综合久久久久久鬼色| 日韩网站在线观看| 欧美一区二区三区精品| 葵司免费一区二区三区四区五区| 麻豆久久久9性大片| 国产综合精品一区| 久久久久久综合| 亚洲精品在线三区| 国产亚洲欧美另类中文| 欧美高清视频一区| 久久精品一区二区三区不卡| 一本大道av伊人久久综合| 麻豆精品视频在线观看| 亚洲综合视频一区| 亚洲一级黄色| 亚洲一区精品电影| 精品成人在线观看| 国产精品久在线观看| 在线观看精品一区| 狠狠色狠狠色综合系列| 欧美日韩大片一区二区三区| 免费观看30秒视频久久| 在线视频精品| 国产精品美女在线| 国产精品久久久99| 久久成人免费视频| 亚洲精品视频在线观看网站| 久久婷婷蜜乳一本欲蜜臀| 亚洲国产日韩一区二区| 欧美激情视频在线免费观看 欧美视频免费一| 在线一区二区三区四区五区| 西西裸体人体做爰大胆久久久| 欧美三级网页| 欧美日韩亚洲一区二区三区在线| 欧美日韩国产成人高清视频| 永久555www成人免费| 亚洲黄色影院| 亚洲乱码国产乱码精品精可以看| 欧美视频在线观看视频极品| 亚洲综合视频在线| 欧美性大战xxxxx久久久| 欧美国产一区二区在线观看| 免费永久网站黄欧美| 国产精品美女久久| 国产欧美日韩在线播放| 欧美一区二区三区四区高清| 国产日韩一区二区| 国产人久久人人人人爽| 在线观看日韩av先锋影音电影院| 在线一区二区日韩| 日韩一级黄色片| 亚洲性视频网站| 亚洲成在线观看| 欧美在线视频导航| 国产欧美日韩综合一区在线观看| 精品不卡一区二区三区| 精品91久久久久| 欧美日韩中国免费专区在线看| 欧美激情中文字幕一区二区| 国产精品制服诱惑| 欧美日韩人人澡狠狠躁视频| 国产精品一级| 在线观看欧美| 新片速递亚洲合集欧美合集| 久久久久久尹人网香蕉| 国产一区二区中文字幕免费看| 国产精品一二三| 国产精品美腿一区在线看| 最新国产の精品合集bt伙计| 欧美日韩中文字幕日韩欧美| 亚洲男人的天堂在线aⅴ视频| 亚洲一区免费网站| 久久亚洲影音av资源网| 国产乱码精品一区二区三区不卡| 国产精品日日摸夜夜摸av| 欧美亚洲免费电影| 亚洲图片激情小说| 欧美极品一区| 欧美日韩在线看| 欧美激情aⅴ一区二区三区| 国产精品久久久久久影院8一贰佰| 欧美亚洲成人免费| 亚洲黄页一区| 欧美噜噜久久久xxx| 国产一区二区高清不卡| 亚洲综合成人婷婷小说| 一区二区在线观看视频| 久久国产精品久久国产精品| 国产精品久在线观看| 欧美日韩黄色一区二区| 麻豆成人综合网| 欧美福利网址| 国产亚洲欧洲997久久综合| 蜜桃精品久久久久久久免费影院| 国产日韩欧美亚洲| 日韩一级二级三级| 激情一区二区| 国产亚洲精品美女| 国产一区二区无遮挡|