爱情鸟第一论坛com高清免费_91免费精品国自产拍在线可以看_亚洲一区精品中文字幕_男人操心女人的视频

JC3509編程代做、代寫Python程序設計

時間:2024-03-31  來源:  作者: 我要糾錯



page 1 of 3
 University of Aberdeen
 South China Normal University
 Aberdeen Institute of Data Science
 & Artificial Intelligence.
 BSc in Artificial Intelligence 2023 – 2024
**Please read all the information below carefully**
Assessment I Briefing Document – Individually Assessed (no teamwork)
Course: JC3509 – Machine Learning Note: This part of assessment accounts for
30% of your total mark of the course.
Learning Outcomes
On successful completion of this component a student will have demonstrated competence in the
following areas:
• Ability to identify, prepare, & manage appropriate datasets for analysis.
• Ability to appropriately present the results of data analysis.
• Ability to analyse the results of data analyses, and to evaluate the performance of analytic
techniques in context.
• Knowledge and understanding of analytic techniques, and ability to appropriately apply
them in context, making correct judgements about how this needs to be done.
Information for Plagiarism and Conduct: Your submitted report may be submitted for
plagiarism check (e.g., Turnitin). Please refer to the slides available at MyAberdeen for more
information about avoiding plagiarism before you start working on the assessment. Please also read
the following information provided by the university: https://www.abdn.ac.uk/sls/onlineresources/avoiding-plagiarism/
In addition, please familiarise yourselves with the following document “code of practice on student
discipline (Academic)”: https://tinyurl.com/y92xgkq6
Report Guidance & Requirements
Your report must conform to the below structure and include the required content as outlined in each
section. Each subtask has its own marks allocated. You must supply a written report, along with the
corresponding code, containing all distinct sections/subtasks that provide a full critical and reflective
account of the processes undertaken.
Overview
This assignment tasks you to undertake the full machine learning pipeline, including data handling
and processing, model construction and training, and evaluation of the developed methods. You are
tasked to create a neural network to classify data into 3 categories.
page 2 of 3
**Please read all the information below carefully**
The dataset needed to fulfil the requirements of this assessment can be found in MyAberdeen.
Data:
This data contains the chemical properties of food product produced by 3 different manufacturers.
The purpose of this experiment is to explore the relationship between the chemical measures listed
below and the manufacturer of the food product. The data has 177 records, where the first column
“Producer” indicates which manufacturer produced the analyses sample. The features of the dataset
are the following:
• Producer – Manufacturer of the product (TARGET).
• Amino_acid – The total percentage content of animo acid.
• Malic_acid – The percentage content of malic acid.
• Ash – The measure of ash present in the product.
• Alc – The alcalinity of ash present.
• Mg – The measure of magnesium.
• Phenols – The total measure of phenols.
• Flavanoids – The measure of flavonoid phenols in the product.
• Nonflavanoid_phenols – The measure of non-flavonoid phenols in the product.
• Proanth – Proanthocyanins measure.
• Colo_int – The color intensity.
• Hue – Hue of the color.
• OD – The protein content of the product.
• Proline – The measure of proline amino acids.
Objectives:
The main purpose of employing this data is the following:
1. Classification: to determine the origin (manufacturer) of the product given analytical
measurements.
2. Analysis: to infer which analytical factors would potentially influence the classification of
the product.
In order to achieve these objectives, we would like to accomplish the following subtasks using
machine learning.
Submission
Please provide the follow:
1. A written report explaining the steps undertaken for each task, and the decisions behind each
choice. You are expected to use machine learning principles to explain your results with
graphs and/or tables.
2. A code submission, comprising of ONE commented python file with all code needed to
replicate the findings in the written report.
page 3 of 3
**Please read all the information below carefully**
Task 1 – Data Preparation (10 Marks)
Subtasks:
1. Import the dataset: Please provide a short description of the data provided and import the data
into your programming environment; provide snippets of code for these purposes.
2. Preprocess the data: If you did any preprocessing over the data, e.g., normalization, please
explain it and the reasons why you did that preprocessing; if you did not do any preprocessing,
also please explain.
Task 2 – Model Construction (50 Marks)
You are tasked to build simple fully connected artificial neural network from scratch to classify the
records into 3 categories (1, 2, or 3).
You are not permitted to use any machine learning or statistical libraries, you are expected to
construct the neural network from scratch, i.e. only using core Python and NumPy.
Subtasks:
1. Loss function: Select and implement an appropriate loss function, explain why you have
selected that loss function in relation to the data and the problem.
2. Network Design: Construct a fully connected neural network with at least one hidden layer.
Explain your architectural choice and demonstrate by code snippets, tests, and written
explanation that your code operates as expected. To achieve this, you will need to implement
both:
a. The Forward Pass.
b. The Backward Pass.
3. Gradient Descent: Update the weights by mini-batch stochastic gradient descent.
Demonstrate by code snippets, tests, and written explanation that the weights are being
updated. You can use advanced optimisation tricks if you wish i.e. momentum.
NOTE: If you are unable to complete the above tasks, you are permitted to use additional libraries
(i.e. PyTorch) however, this will result in a deduction of 20 marks.
Task 3 – Model Training (15 Marks)
Take the model from the previous task and train it on the data you pre-processed in Task 1. Ensure
that you train your model on a sub-set of the data, holding out a subset for validation.
Subtasks:
1. Model Training: Perform training and parameter selection on the training set.
2. Module Regularisation: Implement a regularisation method, briefly explain (Max 200 words)
how it works in the context of your code, use code snippets to help.
3. Model inference: Validate the model by performing inference on the held-out validation data.
page 4 of 3
**Please read all the information below carefully**
Task 4 – Evaluation (25 Marks)
Evaluate the performance of your trained classifier and employ machine learning principles to
explain your results with graphs and/or tables. In addition, perform some analyses on the trained
model to better understand which analytical factors would potentially influence the classification of
the product.
Subtasks:
1. Present Results: Present the results of your classifier via appropriate metrics for the problem
statement.
2. Plot: Plot the loss curve for training and validation, answer the following questions:
a. What does your loss curve tell you?
b. Are you observing any overfitting or underfitting?
c. Does the addition of regularisation help?
3. Explain Results: Explain the results from the previous subtasks in context of the problem
statement/setting.
Marking Criteria
• Depth and breadth of knowledge.
• Technical details of formalisation, implementation and pseudo-code.
• Communication skills (clear, technical contents and sound reasoning)
• Structure of document.
Submission Instructions
You should submit a PDF version of your report and the accompanying code to the Codio
environment. For the deadline of this assessment, please check it on MyAberdeen. The name of the
PDF file should have the form “JC3509_Assessment1 _< your Surname>_<your first
name>_<Your Student ID>”. For instance, “JC3509_Assessment1_Smith_John_4568985.pdf”,
where 4568985 is your student ID.
Any questions pertaining to any aspects of this assessment, please address them to the course
請加QQ:99515681  郵箱:99515681@qq.com   WX:codehelp








 

標簽:

掃一掃在手機打開當前頁
  • 上一篇:CHC5223代寫、Java/c++編程設計代做
  • 下一篇:代寫CSci 4061、c/c++,Java程序代做
  • 無相關信息
    昆明生活資訊

    昆明圖文信息
    蝴蝶泉(4A)-大理旅游
    蝴蝶泉(4A)-大理旅游
    油炸竹蟲
    油炸竹蟲
    酸筍煮魚(雞)
    酸筍煮魚(雞)
    竹筒飯
    竹筒飯
    香茅草烤魚
    香茅草烤魚
    檸檬烤魚
    檸檬烤魚
    昆明西山國家級風景名勝區
    昆明西山國家級風景名勝區
    昆明旅游索道攻略
    昆明旅游索道攻略
  • 短信驗證碼平臺 理財 WPS下載

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 kmw.cc Inc. All Rights Reserved. 昆明網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    爱情鸟第一论坛com高清免费_91免费精品国自产拍在线可以看_亚洲一区精品中文字幕_男人操心女人的视频
    <strike id="bfrlb"></strike><form id="bfrlb"><form id="bfrlb"><nobr id="bfrlb"></nobr></form></form>

        <sub id="bfrlb"><listing id="bfrlb"><menuitem id="bfrlb"></menuitem></listing></sub>

          <form id="bfrlb"></form>

            <form id="bfrlb"></form>

              <address id="bfrlb"></address>

              <address id="bfrlb"></address>
              欧美精品一区二区三区四区| 韩国三级电影一区二区| 欧美激情无毛| 国内精品99| 欧美在线观看一区| 欧美日韩精品欧美日韩精品一| 久久亚洲一区二区| 亚洲国产一区二区三区高清| 欧美在线视频播放| 亚洲精品网站在线播放gif| 性亚洲最疯狂xxxx高清| 国内揄拍国内精品少妇国语| 亚洲资源在线观看| 欧美午夜精品一区二区三区| 欧美日韩国产另类不卡| 欧美大片免费观看| 欧美 日韩 国产精品免费观看| 国产精品xnxxcom| 欧美国产日韩一区二区在线观看| 亚洲影音一区| 国产精品每日更新| 亚洲理伦电影| 国产欧美大片| 免费一区二区三区| 亚洲国产日韩欧美在线99| 欧美日韩在线不卡| 中文亚洲视频在线| 久久久精品国产免费观看同学| 在线观看视频一区| 欧美国产日韩一区| 久久亚洲国产精品一区二区| 国产精品va在线播放| 蜜桃av久久久亚洲精品| 欧美精品一区二区精品网| 欧美日韩国产欧美日美国产精品| 一区二区国产日产| 最新国产精品拍自在线播放| 99伊人成综合| 欧美日韩成人一区二区| 亚洲视频免费在线观看| 欧美暴力喷水在线| 亚洲精品视频二区| 国产欧美一区二区精品性| 国产精品男人爽免费视频1| 国产一区二区三区久久久久久久久| 亚洲综合导航| 欧美一区二区在线| 欧美有码视频| 99国产精品99久久久久久| 一区二区冒白浆视频| 午夜视频一区在线观看| 欧美一区二区在线观看| 亚洲美女在线视频| 久久综合久久88| 亚洲男人天堂2024| 伊人精品在线| 久久中文精品| 亚洲激情av| 午夜亚洲性色视频| 国产字幕视频一区二区| 久久不射2019中文字幕| 亚洲电影一级黄| 欧美激情精品久久久久| 国产精品va在线播放我和闺蜜| 国产日韩在线亚洲字幕中文| 国产精品乱码妇女bbbb| 欧美日韩123| 亚洲一区国产| 亚洲欧洲在线看| 国语自产精品视频在线看| 亚洲韩国一区二区三区| 亚洲国语精品自产拍在线观看| 国内揄拍国内精品久久| 亚洲午夜免费福利视频| 久久久国产一区二区三区| 国产精品久久久久久久久果冻传媒| 亚洲欧美日韩人成在线播放| 国产精品女同互慰在线看| 欧美日韩国产在线播放网站| 美日韩精品免费观看视频| 亚洲一二三区视频在线观看| 国产精品另类一区| 欧美精品在线观看播放| 农夫在线精品视频免费观看| 激情久久五月| 欧美一级二级三级蜜桃| 在线视频你懂得一区二区三区| 99视频精品全部免费在线| 亚洲天堂免费在线观看视频| 午夜久久tv| 制服丝袜激情欧洲亚洲| 99国产精品国产精品久久| 欧美日韩国产一中文字不卡| 樱桃国产成人精品视频| 亚洲九九精品| 日韩视频不卡中文| 久久亚洲综合网| 免费日韩av电影| 国产欧美在线观看一区| 99精品欧美| 欧美www在线| 亚洲韩国精品一区| 亚洲国产精品一区二区久| 一区二区三区日韩欧美| 激情偷拍久久| 亚洲美女福利视频网站| 亚洲午夜精品久久| 99精品国产一区二区青青牛奶| 午夜久久福利| 欧美在线日韩在线| 99在线观看免费视频精品观看| 在线一区二区视频| 亚洲精品久久久久久久久久久| 另类人畜视频在线| 午夜精品亚洲| 亚洲国产欧美日韩精品| 一本色道久久加勒比88综合| 久久蜜桃资源一区二区老牛| 国产精品国产三级国产普通话蜜臀| 久久久www免费人成黑人精品| 欧美四级剧情无删版影片| 一区在线观看视频| 欧美精品一卡| 麻豆精品一区二区av白丝在线| 欧美成人在线网站| 欧美精品一区在线发布| 亚洲电影下载| 久久久久久日产精品| 亚洲国产精品小视频| 欧美韩日高清| 国产一区二区三区久久悠悠色av| 亚洲免费一级电影| 欧美高清自拍一区| 国产一区激情| 欧美一区二区福利在线| 亚洲级视频在线观看免费1级| 亚洲人成网在线播放| 欧美久久久久久蜜桃| 亚洲精品之草原avav久久| 欧美日韩精品一区二区天天拍小说| 在线观看日韩精品| 久久亚洲欧洲| 午夜视频一区二区| 在线观看精品视频| 欧美日韩亚洲一区二区三区在线观看| 黄色av成人| 久久精品国产v日韩v亚洲| 欧美精品久久久久a| 一本色道婷婷久久欧美| 一区二区三区我不卡| 国内综合精品午夜久久资源| 在线精品观看| 99视频在线观看一区三区| 亚洲电影中文字幕| 欧美精品一区二区蜜臀亚洲| 欧美福利视频网站| 激情综合色综合久久| 亚洲图片在区色| 亚洲风情在线资源站| 韩国精品一区二区三区| 国产一区二区在线观看免费| 亚洲一区三区视频在线观看| 国产精品久久久久久久久久妞妞| 久久精品夜色噜噜亚洲a∨| 欧美激情国产日韩精品一区18| 久久国产精品72免费观看| 曰韩精品一区二区| 欧美国产成人精品| 国产精品午夜av在线| 噜噜爱69成人精品| 伊人成人在线视频| 麻豆av福利av久久av| 亚洲女同性videos| 国产精品多人| 好男人免费精品视频| 一区二区三区.www| 99re6这里只有精品| 久久国产加勒比精品无码| 国产精品久久久久久福利一牛影视| 久久免费99精品久久久久久| 欧美一进一出视频| 国产日韩欧美制服另类| 一本大道久久a久久精二百| 久久综合一区二区三区| 中文在线不卡| 欧美专区一区二区三区| 亚洲精选91| 欧美大片免费久久精品三p| 夜夜爽夜夜爽精品视频| 久久米奇亚洲| 国产一区二区三区久久久| 欧美成人精品一区| 欧美无乱码久久久免费午夜一区| 先锋影音久久| 国内精品写真在线观看| 国产日韩精品综合网站| 美女国产精品| 国产精品香蕉在线观看| 国产精品一区二区在线| 久久久久88色偷偷免费|