爱情鸟第一论坛com高清免费_91免费精品国自产拍在线可以看_亚洲一区精品中文字幕_男人操心女人的视频

AI6126代做、Python設計程序代寫

時間:2024-04-12  來源:  作者: 我要糾錯



2023-S2 AI6126 Project 2
Blind Face Super-Resolution
Project 2 Specification (Version 1.0. Last update on 22 March 2024)
Important Dates
Issued: 22 March 2024
Release of test set: 19 April 2023 12:00 AM SGT
Due: 26 April 2023 11:59 PM SGT
Group Policy
This is an individual project
Late Submission Policy
Late submissions will be penalized (each day at 5% up to 3 days)
Challenge Description
Figure 1. Illustration of blind face restoration
The goal of this mini-challenge is to generate high-quality (HQ) face images from the
corrupted low-quality (LQ) ones (see Figure 1) [1]. The data for this task comes from
the FFHQ. For this challenge, we provide a mini dataset, which consists of 5000 HQ
images for training and 400 LQ-HQ image pairs for validation. Note that we do not
provide the LQ images in the training set. During the training, you need to generate
the corresponding LQ images on the fly by corrupting HQ images using the random
second-order degradation pipeline [1] (see Figure 2). This pipeline contains 4 types
of degradations: Gaussian blur, Downsampling, Noise, and Compression. We will
give the code of each degradation function as well as an example of the degradation
config for your reference.
Figure 2. Illustration of second-order degradation pipeline during training
During validation and testing, algorithms will generate an HQ image for each LQ face
image. The quality of the output will be evaluated based on the PSNR metric
between the output and HQ images (HQ images of the test set will not be released).
Assessment Criteria
In this challenge, we will evaluate your results quantitatively for scoring.
Quantitative evaluation:
We will evaluate and rank the performance of your network model on our given 400
synthetic testing LQ face images based on the PSNR.
The higher the rank of your solution, the higher the score you will receive. In general,
scores will be awarded based on the Table below.
Percentile
in ranking
≤ 5% ≤ 15% ≤ 30% ≤ 50% ≤ 75% ≤ 100% *
Scores 20 18 16 14 12 10 0
Notes:
● We will award bonus marks (up to 2 marks) if the solution is interesting or
novel.
● To obtain more natural HQ face images, we also encourage students to
attempt to use a discriminator loss with a GAN during the training. Note that
discriminator loss will lower the PSNR score but make the results look more
natural. Thus, you need to carefully adjust the GAN weight to find a tradeoff
between PSNR and perceptual quality. You may earn bonus marks (up to 2
marks) if you achieve outstanding results on the 6 real-world LQ images,
consisting of two slightly blurry, two moderately blurry, and two extremely
blurry test images. (The real-world test images will be released with the 400
test set) [optional]
● Marks will be deducted if the submitted files are not complete, e.g., important
parts of your core codes are missing or you do not submit a short report.
● TAs will answer questions about project specifications or ambiguities. For
questions related to code installation, implementation, and program bugs, TAs
will only provide simple hints and pointers for you.
Requirements
● Download the dataset, baseline configuration file, and evaluation script: here
● Train your network using our provided training set.
● Tune the hyper-parameters using our provided validation set.
● Your model should contain fewer than 2,276,356 trainable parameters, which
is 150% of the trainable parameters in SRResNet [4] (your baseline network).
You can use
● sum(p.numel() for p in model.parameters())
to compute the number of parameters in your network. The number of
parameters is only applicable to the generator if you use a GAN.
● The test set will be available one week before the deadline (this is a common
practice of major computer vision challenges).
● No external data and pre-trained models are allowed in this mini
challenge. You are only allowed to train your models from scratch using the
5000 image pairs in our given training set.
Submission Guidelines
Submitting Results on CodaLab
We will host the challenge on CodaLab. You need to submit your results to CodaLab.
Please follow the following guidelines to ensure your results are successfully
recorded.
● The CodaLab competition link:
https://codalab.lisn.upsaclay.fr/competitions/18233?secret_key
=6b842a59-9e76-47b1-8f56-283c5cb4c82b
● Register a CodaLab account with your NTU email.
● [Important] After your registration, please fill in the username in the Google
Form: https://forms.gle/ut764if5zoaT753H7
● Submit output face images from your model on the 400 test images as a zip
file. Put the results in a subfolder and use the same file name as the original
test images. (e.g., if the input image is named as 00001.png, your result
should also be named as 00001.png)
● You can submit your results multiple times but no more than 10 times per day.
You should report your best score (based on the test set) in the final report.
● Please refer to Appendix A for the hands-on instructions for the submission
procedures on CodaLab if needed.
Submitting Report on NTULearn
Submit the following files (all in a single zip file named with your matric number, e.g.,
A12345678B.zip) to NTULearn before the deadline:
● A short report in pdf format of not more than five A4 pages (single-column,
single-line spacing, Arial 12 font, the page limit excludes the cover page and
references) to describe your final solution. The report must include the
following information:
○ the model you use
○ the loss functions
○ training curves (i.e., loss)
○ predicted HQ images on 6 real-world LQ images (if you attempted the
adversarial loss during training)
○ PSNR of your model on the validation set
○ the number of parameters of your model
○ Specs of your training machine, e.g., number of GPUs, GPU model
You may also include other information, e.g., any data processing or
operations that you have used to obtain your results in the report.
● The best results (i.e., the predicted HQ images) from your model on the 400
test images. And the screenshot on Codalab of the score achieved.
● All necessary codes, training log files, and model checkpoint (weights) of your
submitted model. We will use the results to check plagiarism.
● A Readme.txt containing the following info:
○ Your matriculation number and your CodaLab username.
○ Description of the files you have submitted.
○ References to the third-party libraries you are using in your solution
(leave blank if you are not using any of them).
○ Any details you want the person who tests your solution to know when
they test your solution, e.g., which script to run, so that we can check
your results, if necessary.
Tips
1. For this project, you can use the Real-ESRGAN [1] codebase, which is based
on BasicSR toolbox that implements many popular image restoration
methods with modular design and provides detailed documentation.
2. We included a sample Real-ESRGAN configuration file (a simple network, i.e.,
SRResNet [4]) as an example in the shared folder. [Important] You need to:
a. Put “train_SRResNet_x4_FFHQ_300k.yml” under the “options” folder.
b. Put “ffhqsub_dataset.py” under the “realesrgan/data” folder.
The PSNR of this baseline on the validation set is around 26.33 dB.
3. For the calculation of PSNR, you can refer to ‘evaluate.py’ in the shared folder.
You should replace the corresponding path ‘xxx’ with your own path.
4. The training data is important in this task. If you do not plan to use MMEditing
for this project, please make sure your pipeline to generate the LQ data is
identical to the one in the configuration file.
5. The training configuration of GAN models is also available in Real-ESRGAN
and BasicSR. You can freely explore the repository.
6. The following techniques may help you to boost the performance:
a. Data augmentation, e.g. random horizontal flip (but do not use vertical
flip, otherwise, it will break the alignment of the face images)
b. More powerful models and backbones (within the complexity
constraint), please refer to some works in reference.
c. Hyper-parameters fine-tuning, e.g., choice of the optimizer, learning
rate, number of iterations
d. Discriminative GAN loss will help generate more natural results (but it
lowers PSNR, please find a trade-off by adjusting loss weights).
e. Think about what is unique to this dataset and propose novel modules.
References
[1] Wang et al., Real-ESRGAN: Training Real-World Blind Super-Resolution with Pure
Synthetic Data, ICCVW 2021
[2] Wang et al., GFP-GAN: Towards Real-World Blind Face Restoration with Generative
Facial Prior, CVPR 2021
[3] Zhou et al., Towards Robust Blind Face Restoration with Codebook Lookup Transformer,
NeurIPS 2022
[4] C. Ledig et al., Photo-realistic Single Image Super-Resolution using a Generative
Adversarial Network, CVPR 2017
[5] Wang et al., A General U-Shaped Transformer for Image Restoration, CVPR 2022
[6] Zamir et al., Restormer: Efficient Transformer for High-Resolution Image Restoration,
CVPR 2022
Appendix A Hands-on Instructions for Submission on CodaLab
After your participation to the competition is approved, you can submit your results
here:
Then upload the zip file containing your results.
If the ‘STATUS’ turns to ‘Finished’, it means that you have successfully uploaded
your result. Please note that this may take a few minutes.

請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp


















 

標簽:

掃一掃在手機打開當前頁
  • 上一篇:代做IDEPG001、代寫c/c++,Java編程設計
  • 下一篇:CSI 2120代做、代寫Python/Java設計編程
  • 無相關信息
    昆明生活資訊

    昆明圖文信息
    蝴蝶泉(4A)-大理旅游
    蝴蝶泉(4A)-大理旅游
    油炸竹蟲
    油炸竹蟲
    酸筍煮魚(雞)
    酸筍煮魚(雞)
    竹筒飯
    竹筒飯
    香茅草烤魚
    香茅草烤魚
    檸檬烤魚
    檸檬烤魚
    昆明西山國家級風景名勝區
    昆明西山國家級風景名勝區
    昆明旅游索道攻略
    昆明旅游索道攻略
  • 短信驗證碼平臺 理財 WPS下載

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 kmw.cc Inc. All Rights Reserved. 昆明網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    爱情鸟第一论坛com高清免费_91免费精品国自产拍在线可以看_亚洲一区精品中文字幕_男人操心女人的视频
    <strike id="bfrlb"></strike><form id="bfrlb"><form id="bfrlb"><nobr id="bfrlb"></nobr></form></form>

        <sub id="bfrlb"><listing id="bfrlb"><menuitem id="bfrlb"></menuitem></listing></sub>

          <form id="bfrlb"></form>

            <form id="bfrlb"></form>

              <address id="bfrlb"></address>

              <address id="bfrlb"></address>
              亚洲一区二区三区在线观看视频| 欧美日韩一区精品| 午夜视频在线观看一区| 欧美人在线观看| 欧美网站大全在线观看| 久久久人成影片一区二区三区观看| 国内外成人免费激情在线视频| 欧美无乱码久久久免费午夜一区| 先锋影院在线亚洲| 亚洲电影毛片| 久久综合久久久久88| 欧美日韩人人澡狠狠躁视频| 欧美夫妇交换俱乐部在线观看| 亚洲精品一区二区三区婷婷月| 国产精品免费视频观看| 99亚洲视频| 久久中文精品| 亚洲一区视频| 亚洲一本视频| 欧美一区二区在线看| 亚洲国产另类久久精品| 尤物精品国产第一福利三区| 亚洲制服av| 一色屋精品视频免费看| 这里只有视频精品| 99精品国产热久久91蜜凸| 欧美日韩午夜视频在线观看| 欧美精品观看| 在线观看欧美一区| 国产欧美综合一区二区三区| 久久尤物电影视频在线观看| 欧美四级伦理在线| 国内精品久久久久伊人av| 黄色一区二区在线观看| 欧美日韩免费一区二区三区视频| 国产农村妇女精品一区二区| 欧美日韩精品一二三区| 国产亚洲一区在线| 欧美激情在线免费观看| 免费亚洲视频| 欧美国产乱视频| 欧美亚洲视频在线观看| 在线视频观看日韩| 在线亚洲欧美视频| 欧美国产亚洲精品久久久8v| 亚洲国产精品成人综合色在线婷婷| 亚洲国产一区视频| 欧美视频免费在线| 欧美精品国产一区二区| 亚洲一区免费网站| 亚洲国产另类久久精品| 国产精品大全| 国产精品一区二区视频| 精品动漫一区二区| 午夜精品久久久久久久蜜桃app| 亚洲精品国久久99热| 毛片av中文字幕一区二区| 午夜宅男欧美| 一本色道久久综合精品竹菊| 国产日韩精品入口| 免费看的黄色欧美网站| 久久精品一区二区三区四区| 亚洲激精日韩激精欧美精品| 久久精品国内一区二区三区| 一区精品在线播放| 日韩西西人体444www| 香蕉成人伊视频在线观看| 亚洲欧美日韩在线高清直播| 国产精品久久一区主播| 99精品国产热久久91蜜凸| 亚洲一区日本| 亚洲九九精品| 久久综合中文| 亚洲一区网站| 国产亚洲一区二区在线观看| 亚洲一区二区三区四区在线观看| 久久精品水蜜桃av综合天堂| 亚洲第一免费播放区| 久久国产毛片| 中文国产亚洲喷潮| 亚洲精品视频在线看| 最新国产成人av网站网址麻豆| 日韩午夜在线播放| 一区二区激情小说| 欧美日韩福利| 激情一区二区| 亚洲欧美日韩国产精品| aa级大片欧美三级| 久久久久久久一区二区三区| 禁断一区二区三区在线| 欧美激情亚洲综合一区| 亚洲精品国产精品乱码不99| 蜜月aⅴ免费一区二区三区| 欧美暴力喷水在线| 国产一区二区三区日韩欧美| 国产精品系列在线播放| 激情亚洲一区二区三区四区| 国产一区二区三区高清| 国内自拍视频一区二区三区| 国产一区二区成人| 欧美一区二区三区免费大片| 国产精品色网| 久久福利精品| 久久久久久电影| 亚洲国产精品久久久久婷婷老年| 国产精品国产三级国产专区53| 国产在线视频欧美一区二区三区| 亚洲欧美日韩精品在线| 国产亚洲精品综合一区91| 亚洲天堂网在线观看| 国产视频综合在线| 亚洲欧美日韩专区| 欧美影院一区| 亚洲欧美精品中文字幕在线| 在线欧美影院| 在线观看视频日韩| 国产女人aaa级久久久级| 欧美一区二区三区精品电影| 国产精品视频第一区| 黑丝一区二区| 亚洲精品之草原avav久久| 亚洲午夜日本在线观看| 久久久久久久综合色一本| 亚洲国产精品一区二区久| 欧美激情一级片一区二区| 亚洲视频网站在线观看| 香蕉久久夜色精品国产使用方法| 久久九九久精品国产免费直播| 在线中文字幕日韩| 国产午夜精品久久久久久久| 国产在线拍揄自揄视频不卡99| 91久久午夜| 精品88久久久久88久久久| 国产精品嫩草99av在线| 国产亚洲人成网站在线观看| 麻豆freexxxx性91精品| 一区视频在线看| 一本久久a久久免费精品不卡| 欧美性天天影院| 午夜精品久久久久| 一区二区在线观看av| 性欧美在线看片a免费观看| 欧美成人精品一区| 影院欧美亚洲| 最新中文字幕一区二区三区| 美国三级日本三级久久99| 亚洲欧美日韩精品久久奇米色影视| 亚洲高清不卡在线观看| 亚洲小说春色综合另类电影| 国产精品盗摄久久久| 欧美日韩国产一区二区三区地区| 黑人操亚洲美女惩罚| 欧美激情一级片一区二区| 国产精品www| 久久久精品国产免费观看同学| 一区二区三区高清在线观看| 午夜亚洲精品| 午夜精品久久久久久久99热浪潮| 激情综合网激情| 欧美成人午夜| 国产视频精品网| 欧美一区二区免费观在线| 亚洲免费激情| 麻豆精品传媒视频| 欧美日本不卡| 亚洲精品国产精品国自产观看浪潮| 欧美成ee人免费视频| 99国产成+人+综合+亚洲欧美| 欧美久久婷婷综合色| 欧美精品成人91久久久久久久| 欧美高清自拍一区| 欧美午夜视频在线观看| 欧美精品在线看| 在线亚洲欧美专区二区| 欧美日韩一区不卡| 欧美日韩国产小视频| 在线免费精品视频| 国产精品一区2区| 伊人久久男人天堂| 欧美一激情一区二区三区| 亚洲图片在线观看| 性欧美1819sex性高清| 牛牛精品成人免费视频| 99视频一区| 国产伦一区二区三区色一情| 久久天天躁夜夜躁狠狠躁2022| 国产精品爱啪在线线免费观看| 久久亚洲一区二区| 久久精品国产久精国产思思| 在线欧美日韩| 亚洲欧美日本精品| 亚洲国产综合视频在线观看| 农夫在线精品视频免费观看| 亚洲精选中文字幕| 欧美插天视频在线播放| 美腿丝袜亚洲色图| 久久精品二区亚洲w码| 欧美成人精品一区二区| 国产精品毛片a∨一区二区三区| 欧美国产精品日韩|