爱情鸟第一论坛com高清免费_91免费精品国自产拍在线可以看_亚洲一区精品中文字幕_男人操心女人的视频

代寫COMP34212、代做Python/c++程序設計

時間:2024-04-29  來源:  作者: 我要糾錯



COMP34212 Cognitive Robotics Angelo Cangelosi
COMP34212: Coursework on Deep Learning and Robotics
34212-Lab-S-Report
Submission deadline: 18 April 2024, 18:00 (BlackBoard)
Aim and Deliverable
The aim of this coursework is (i) to analyse the role of the deep learning approach within the
context of the state of the art in robotics, and (ii) to develop skills on the design, execution and
evaluation of deep neural networks experiments for a vision recognition task. The assignment will
in particular address the learning outcome LO1 on the analysis of the methods and software
technologies for robotics, and LO3 on applying different machine learning methods for intelligent
behaviour.
The first task is to do a brief literature review of deep learning models in robotics. You can give a
summary discussion of various applications of DNN to different robotics domains/applications.
Alternatively, you can focus on one robotic application, and discuss the different DNN models used
for this application. In either case, the report should show a good understanding of the key works in
the topic chosen.
The second task is to extend the deep learning laboratory exercises (e.g. Multi-Layer Perceptron
(MLP) and/or Convolutional Neural Network (CNN) exercises for image datasets) and carry out and
analyse new training simulations. This will allow you to evaluate the role of different
hyperparameter values and explain and interpret the general pattern of results to optimise the
training for robotics (vision) applications. You should also contextualise your work within the state
of the art, with a discussion of the role of deep learning and its pros and cons for robotics research
and applications.
You can use the standard object recognition datasets (e.g. CIFAR, COCO) or robotics vision datasets
(e.g. iCub World1, RGB-D Object Dataset2). You are also allowed to use other deep learning models
beyond those presented in the lab.
The deliverable to submit is a report (max 5 pages including figures/tables and references) to
describe and discuss the training simulations done and their context within robotics research and
applications. The report must also include on online link to the Code/Notebook within the report,
or ad the code as appendix (the Code Appendix is in addition to the 5 pages of the core report). Do
not use AI/LLM models to generate your report. Demonstrate a credible analysis and discussion of
1 https://robotology.github.io/iCubWorld/
2 https://rgbd-dataset.cs.washington.edu/index.html
COMP34212 Cognitive Robotics Angelo Cangelosi
your own simulation setup and results, not of generic CNN simulations. And demonstrate a
credible, personalised analysis of the literature backed by cited references.
Marking Criteria (out of 30)
1. Contextualisation and state of the art in robotics and deep learning, with proper use of
citations backing your academic brief review and statements (marks given for
clarity/completeness of the overview of the state of the art, with spectrum of deep learning
methods considered in robotics; credible personalised critical analysis of the deep learning
role in robotics; quality and use of the references cited) [10]
2. A clear introductory to the DNN classification problem and the methodology used, with
explanation and justification of the dataset, the network topology and the hyperparameters
chosen; Add Link to the code/notebook you used or add the code in appendix. [3]
3. Complexity of the network(s), hyperparameters and dataset (marks given for complexity
and appropriateness of the network topology; hyperparameter exploration approach; data
processing and coding requirements) [4]
4. Description, interpretation, and assessment of the results on the hyperparameter testing
simulations; include appropriate figures and tables to support the results; depth of the
interpretation and assessment of the quality of the results (the text must clearly and
credibly explain the data in the charts/tables); Discussion of alternative/future simulations
to complement the results obtained) [13]
5. 10% Marks lost if report longer than the required maximum of 5 pages: 10% Marks lost if
code/notebook (link to external repository or as appendix) is not included.
Due Date: 18 April 2024, h18.00, pdf on Blackboard. Use standard file name: 34212-Lab-S-Report

請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp















 

標簽:

掃一掃在手機打開當前頁
  • 上一篇:ENGI 1331代做、代寫R程序語言
  • 下一篇:代做FINM7008、代寫FINM7008 Applied Investments
  • 無相關信息
    昆明生活資訊

    昆明圖文信息
    蝴蝶泉(4A)-大理旅游
    蝴蝶泉(4A)-大理旅游
    油炸竹蟲
    油炸竹蟲
    酸筍煮魚(雞)
    酸筍煮魚(雞)
    竹筒飯
    竹筒飯
    香茅草烤魚
    香茅草烤魚
    檸檬烤魚
    檸檬烤魚
    昆明西山國家級風景名勝區
    昆明西山國家級風景名勝區
    昆明旅游索道攻略
    昆明旅游索道攻略
  • 短信驗證碼平臺 理財 WPS下載

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 kmw.cc Inc. All Rights Reserved. 昆明網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    爱情鸟第一论坛com高清免费_91免费精品国自产拍在线可以看_亚洲一区精品中文字幕_男人操心女人的视频
    <strike id="bfrlb"></strike><form id="bfrlb"><form id="bfrlb"><nobr id="bfrlb"></nobr></form></form>

        <sub id="bfrlb"><listing id="bfrlb"><menuitem id="bfrlb"></menuitem></listing></sub>

          <form id="bfrlb"></form>

            <form id="bfrlb"></form>

              <address id="bfrlb"></address>

              <address id="bfrlb"></address>
              一区二区高清视频| 欧美系列一区| 亚洲欧美三级在线| 日韩网站在线| 久久免费视频网站| 久久岛国电影| 亚洲福利视频二区| 欧美日韩亚洲一区二区三区四区| 亚洲欧美成人精品| 国产日本欧洲亚洲| 欧美日韩国产综合网| 在线日本欧美| 欧美精品麻豆| 欧美体内she精视频| 亚洲一区二区在线看| 国产精品sm| 午夜精品www| 欧美日韩1区2区3区| 美女性感视频久久久| 亚洲精品在线免费| 亚洲在线视频观看| 亚洲女ⅴideoshd黑人| 国产欧美日本一区视频| 香蕉久久夜色精品| 亚洲精品久久久久久久久久久久久| 欧美日韩精品欧美日韩精品| 99在线精品视频| 韩国女主播一区二区三区| 欧美日本免费一区二区三区| 欧美日韩免费精品| 久久久久久久高潮| 久久激情视频免费观看| 蜜臀av一级做a爰片久久| 日韩一级免费| 亚洲一区中文字幕在线观看| 欧美日韩精品欧美日韩精品| 99精品黄色片免费大全| 在线视频国内自拍亚洲视频| 在线亚洲成人| 亚洲激情婷婷| 一区二区免费看| 国产一区二区三区免费观看| 欧美一级艳片视频免费观看| 欧美一级欧美一级在线播放| 日韩一级成人av| 欧美女同在线视频| 91久久在线观看| 极品裸体白嫩激情啪啪国产精品| 欧美在线观看视频一区二区三区| 久久gogo国模裸体人体| 国产综合色精品一区二区三区| 欧美成人免费观看| 久久精品二区| 免费视频一区二区三区在线观看| 亚洲第一黄色| 国产精品区二区三区日本| 欧美精品日韩www.p站| 亚洲在线成人| 亚洲欧洲av一区二区三区久久| 亚洲免费观看高清完整版在线观看| 午夜视频在线观看一区二区| 欧美激情乱人伦| 欧美在线视频一区| 久久精品国产久精国产爱| 欧美性理论片在线观看片免费| 欧美精品首页| 国产精品99久久久久久久久久久久| 欧美精品在线看| 影音欧美亚洲| 亚洲区第一页| 亚洲欧洲av一区二区三区久久| 亚洲日本欧美天堂| 亚洲精品自在久久| 免费在线视频一区| 欧美精品在线一区二区三区| 亚洲国产影院| 亚洲国产老妈| 在线看视频不卡| 影音先锋亚洲电影| 久久躁日日躁aaaaxxxx| 亚洲欧美国产制服动漫| 国产精品黄色在线观看| 久久精品国产2020观看福利| 亚洲国产乱码最新视频| 国语自产精品视频在线看8查询8| 99国产精品国产精品毛片| 一区二区三区在线免费视频| 久久国产加勒比精品无码| 欧美大香线蕉线伊人久久国产精品| 国产精品丝袜xxxxxxx| 欧美午夜精品一区二区三区| 日韩视频一区二区在线观看| 欧美日韩不卡在线| 韩国一区二区三区在线观看| 欧美日韩亚洲一区在线观看| 久热精品视频在线观看| 国产欧美日韩三区| 欧美好骚综合网| 免费在线播放第一区高清av| 久久久在线视频| 一区二区在线视频观看| 亚洲国产精品尤物yw在线观看| 亚洲人成网站影音先锋播放| 久久伊人亚洲| 久久精品国产v日韩v亚洲| 一区二区动漫| 一区精品久久| 玖玖国产精品视频| 久久精品国产免费| 欧美久久综合| 欧美制服丝袜| 欧美成人免费在线| 农夫在线精品视频免费观看| 久久综合亚州| 日韩一区二区精品| 国产一区欧美| 欧美一区二区国产| 美女被久久久| 欧美性天天影院| 激情久久久久久久久久久久久久久久| 日韩写真视频在线观看| 国产精品丝袜白浆摸在线| 亚洲毛片一区二区| 欧美一区三区三区高中清蜜桃| 久久伊人精品天天| 午夜精品免费在线| 久久久噜噜噜久久| 欧美日韩国产首页| 国产日韩欧美亚洲| 韩日午夜在线资源一区二区| 久久精品国语| 欧美电影美腿模特1979在线看| 亚洲成人自拍视频| 老司机午夜精品视频在线观看| 欧美精品福利在线| 欧美日韩一区在线观看视频| 久久久久在线观看| 欧美劲爆第一页| 亚洲精选国产| 激情欧美一区二区三区在线观看| 久久九九全国免费精品观看| 久久免费少妇高潮久久精品99| 亚洲日本成人| 欧美精品在线极品| 国产手机视频一区二区| 一区二区三区欧美| 久久久久久黄| 国产九区一区在线| 欧美成人一品| 国产精品视频网址| 亚洲欧美日本国产专区一区| 国产精品日韩欧美综合| 亚洲欧美日韩综合国产aⅴ| 国产精品爱啪在线线免费观看| 亚洲淫片在线视频| 国色天香一区二区| 欧美中文在线视频| 国产伦精品一区二区三区照片91| 欧美精品自拍| 欧美日韩hd| 亚洲国产精品久久91精品| 亚洲精品自在在线观看| 午夜欧美电影在线观看| 在线日韩精品视频| 激情久久久久久久| 在线精品一区| 一区二区三区在线免费播放| 亚洲免费在线看| 亚洲在线观看| 亚洲精品中文字幕在线| 欧美日韩精品一区二区天天拍小说| 久久久久久国产精品一区| 久久这里有精品15一区二区三区| 狂野欧美性猛交xxxx巴西| 欧美人成在线视频| 亚洲另类视频| 亚洲一区在线看| 国内精品伊人久久久久av一坑| 欧美特黄一区| 99精品欧美一区二区三区| 在线亚洲电影| 在线观看视频一区二区| 午夜精品视频在线| 一区二区三区免费在线观看| 亚洲免费电影在线| 蜜桃久久av| 亚洲自拍都市欧美小说| 性色av香蕉一区二区| 国产农村妇女毛片精品久久莱园子| 欧美大片网址| 亚洲免费av片| 女人天堂亚洲aⅴ在线观看| 久久久久久久性| 国产美女精品视频免费观看| 久久狠狠久久综合桃花| 欧美午夜女人视频在线| 亚洲美女毛片| 亚洲人精品午夜在线观看| 欧美xx视频| 国语自产在线不卡|