爱情鸟第一论坛com高清免费_91免费精品国自产拍在线可以看_亚洲一区精品中文字幕_男人操心女人的视频

代做MATH1033、代寫c/c++,Java程序語言

時間:2024-05-11  來源:  作者: 我要糾錯



The University of Nottingham
SCHOOL OF MATHEMATICAL SCIENCES
SPRING SEMESTER 2023-2024
MATH1033 - STATISTICS
Your neat, clearly-legible solutions should be submitted electronically via the MATH1033 Moodle page by
18:00 on Wednesday 8th May 2024. Since this work is assessed, your submission must be entirely your
own work (see the University’s policy on Academic Misconduct). Submissions made more than one week
after the deadline date will receive a mark of zero. Please try to make your submission by the deadline.
General points about the coursework
1. Please use R Markdown to produce your report.
2. An R Markdown template file to get you started is available to download from Moodle. Do make use of
this, besides reading carefully the Hints and Tips section below.
3. Please submit your report a self-contained html file (i.e. as produced by R Markdown) or pdf.
4. If you have any queries about the coursework, please ask me by email (of course, please limit this to
requests for clarification; don’t ask for any of the solution nor post any of your own).
Your task
The data file scottishData.csv contains a sample of the ”Indicator” data that were used to compute the 2020
Scottish Index of Multiple Deprivation (SIMD), a tool used by government bodies to support policy-making. If
you are interested, you can see the SIMD and find out more about it here: https://simd.scot
Once you have downloaded the csv file, and once you’ve set the RStudio working directory to wherever you
put the file, you can load the data with dat <- read.csv(”scottishData.csv”) The file contains data for a sample
of 400 ”data zones” within Scotland. Data zones are small geographical areas in Scotland, of which there
are 6,976 in total, with each typically containing a population of between 500 and 1000 people. Of the 400
observations within the data file, 100 are from the Glasgow City, 100 are from City of Edinburgh, and 200
are from elsewhere in Scotland. Glasgow and Edinburgh are the two largest cities in Scotland by population.
Table 1 shows a description of the different variables within the data set.
Your report should have the following section headings: Summary, Introduction, Methods, Results, Conclusions.
For detailed guidance, read carefully section page 4 of the notes, and the ”How will the report be marked?”
section below.
The Results section of your report should include subsections per points 1-3 as follows. The bullet points
indicate what should be included within these subsections, along with suitable brief commentary.
MATH1033 Turn Over
2 MATH1010
1. A comparison of employment rate between Glasgow and Edinburgh.
• A single plot with side-by-side boxplots for the Employment_rate variable for each of
Glasgow and Edinburgh.
• A histogram of the Employment_rate variable with accompanying normal QQ plot, for
each of Glasgow and Edinburgh.
• Sample means and variances of the Employment_rate variable for the data zones in
each of Glasgow and Edinburgh.
• Test of whether there is a difference in variability of Employment_rate scores between
Glasgow and Edinburgh.
• Test of whether there is a difference in means of Employment_rate scores between
Glasgow and Edinburgh.
2. Investigation into how Employment_rate and other variables are associated.
• A matrix of pairwise scatterplots for the following variables: Employment_rate,
Attainment, Attendance, ALCOHOL, and Broadband. Also present pairwise correlation
coefficients between these variables.
• A regression of Employment_rate on Attendance, including a scatterplot showing a line
of best fit.
3. A further investigation into a respect of your choosing.
• It’s up to you what you choose here. Possible things you could consider are: considering
an analysis similar to 1 above, but involving the data on data zones outside of Glasgow
and Edinburgh; considering whether what you find in investigations in 2 above are
similar if you consider whether the data zones are from Glasgow, Edinburgh or elsewhere;
investigating the other variables in the data set besides these in 1 and 2.
• Note that some variables will be very strongly correlated, but with fairly obvious/boring
explanation: for example “rate” variables (see Table 1) are just “count” variables
divided by population size, and data zones are designed to have similar population
sizes.
• Think freely and creatively about what is interesting to investigate, especially how you
could make good use of the methods that you are learning in the module.
Please include as an appendix the R code to produce the results in your report, but don’t include
R code or unformatted text/numerical output in the main part of the report itself.
Hints and tips:
1. Use the template .Rmd file provided on Moodle as your starting point.
2. Read carefully “How will the report be marked?” below. Then re-read it again once again
just before you submit to make sure you have everything in place.
3. You may find the subset command useful. Some examples:
• glasgow <- subset(dat, Council_area == "Glasgow City") defines a new variable containing
data only for Glasgow.
• subset(dat, (Council_area != "City of Edinburgh" & Council_area != "Glasgow City"))
finds the data zones that are not in either Edinburgh or Glasgow.
4. The command names(dat) will tell you the names of the variables (columns) in dat.
5. dat(,c(16,17,18)) will pick out just the 16th, 17th, 18th column (for example).
MATH1010
[ ]
m
( ]
⑧m
3 MATH1010
6. The pairs() function produces a matrix of pairwise scatterplots. cor() computes pairwise
correlation coefficients.
7. Do make sure that figures have clear titles, axis labels, etc
MATH1010 Turn Over
.
4 MATH1010
How will the report be marked?
The marking criteria and approximate mark allocation are as follows:
Summary [4 marks] - have you explained (in non-technical language) (a) the aim of the analysis;
(b) (very briefly) the methods you have used; and (c) the key findings?
Introduction [5] - have you (a) explained the context, talked in a bit more detail about the aim;
(b) given some relevant background information; (c) described the available data; (d) explained
why the study is useful/important?
Methods [3] - have you described the statistical techniques you have used (in at least enough
detail that a fellow statistician can understand what you have done)?
Results [14, of which 7 are for the investigation of your choosing mentioned in point 3 above] -
have you presented suitable graphical/numerical summaries, tests and results, and interspersed
these with text giving explanation?
Conclusions [4] - have you (a) recapped your key findings, (b) discussed any limitations, and
(c) suggested possible further extensions of the work?
Presentation [10] - overall, does the report flow nicely, is the writing clear, and is the presentation
tidy (figures/tables well labelled and captioned)? Has Markdown been used well?
MATH1010
5 MATH1010
Table 1: A description of the different variables. “Standardised ratio” is such that a value of 100
is the Scotland average for a population with the same age and sex profile.
MATH1010 End

請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp



















 

標簽:

掃一掃在手機打開當前頁
  • 上一篇:COMP2017代寫、代做Python/Java程序
  • 下一篇:CMT219代寫、代做Java程序語言
  • 代做CSCI 2525、c/c++,Java程序語言代寫
  • COMP 315代寫、Java程序語言代做
  • 昆明生活資訊

    昆明圖文信息
    蝴蝶泉(4A)-大理旅游
    蝴蝶泉(4A)-大理旅游
    油炸竹蟲
    油炸竹蟲
    酸筍煮魚(雞)
    酸筍煮魚(雞)
    竹筒飯
    竹筒飯
    香茅草烤魚
    香茅草烤魚
    檸檬烤魚
    檸檬烤魚
    昆明西山國家級風景名勝區
    昆明西山國家級風景名勝區
    昆明旅游索道攻略
    昆明旅游索道攻略
  • 短信驗證碼平臺 理財 WPS下載

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 kmw.cc Inc. All Rights Reserved. 昆明網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    爱情鸟第一论坛com高清免费_91免费精品国自产拍在线可以看_亚洲一区精品中文字幕_男人操心女人的视频
    <strike id="bfrlb"></strike><form id="bfrlb"><form id="bfrlb"><nobr id="bfrlb"></nobr></form></form>

        <sub id="bfrlb"><listing id="bfrlb"><menuitem id="bfrlb"></menuitem></listing></sub>

          <form id="bfrlb"></form>

            <form id="bfrlb"></form>

              <address id="bfrlb"></address>

              <address id="bfrlb"></address>
              欧美精品一区二区三区一线天视频| 国产日韩欧美综合精品| 一区二区三区四区五区精品| 国产精品萝li| 亚洲欧美日韩系列| 久久久五月天| 国产综合色在线视频区| 亚洲国产欧美国产综合一区| 国产麻豆日韩| 亚洲在线电影| 欧美绝品在线观看成人午夜影视| 亚洲久久一区二区| 国产精品美女| 亚洲女女做受ⅹxx高潮| 欧美专区亚洲专区| 国产手机视频一区二区| 国产一区成人| 午夜精品视频| 亚洲永久在线观看| 欧美不卡激情三级在线观看| 激情六月婷婷综合| 久久视频这里只有精品| 久久一综合视频| 亚洲第一色中文字幕| 久久人人97超碰国产公开结果| 国产精品午夜av在线| 亚洲另类自拍| 91久久精品日日躁夜夜躁欧美| 亚洲欧美日韩网| 久久se精品一区二区| 亚洲乱码精品一二三四区日韩在线| 欧美激情一区三区| 亚洲国产日韩欧美在线动漫| 亚洲影视中文字幕| 亚洲欧洲一区二区三区久久| 亚洲日韩欧美一区二区在线| 国产一区二区在线观看免费播放| 在线视频欧美日韩精品| 亚洲免费观看视频| 国产亚洲综合在线| 免费成人高清视频| 亚洲欧美激情在线视频| 国产精品无码永久免费888| 欧美精品久久一区二区| 亚洲精品自在在线观看| 国产亚洲欧洲| 亚洲第一福利在线观看| 欧美电影免费| 国产精品免费区二区三区观看| 欧美视频在线观看一区| 欧美三级午夜理伦三级中视频| 国产欧美一区二区三区在线看蜜臀| 中文av一区二区| 欧美连裤袜在线视频| 亚洲欧美999| 亚洲免费观看高清在线观看| 一区二区三区自拍| 久久色中文字幕| 久久嫩草精品久久久精品| 欲色影视综合吧| 欧美a级片一区| 在线一区二区视频| 亚洲欧美日韩一区二区| 美女爽到呻吟久久久久| 在线亚洲电影| 国产精品福利网| 国产欧美日韩在线播放| 久久精品盗摄| 在线精品视频一区二区三四| 亚洲影视在线播放| 精品成人a区在线观看| 欧美日韩国产天堂| 国产精品swag| 欧美午夜在线观看| 国产日产高清欧美一区二区三区| 久久人人精品| 国产日韩高清一区二区三区在线| 欧美一区二区三区免费视频| 国产在线精品自拍| 91久久在线观看| 在线亚洲欧美专区二区| 欧美日韩高清区| 亚洲欧美日韩视频二区| 亚洲裸体视频| 亚洲成人在线观看视频| 久久精品成人一区二区三区| 国产日韩在线看片| 欧美日韩一区二区免费在线观看| 久久一区二区三区av| 亚洲一区免费在线观看| 欧美精选午夜久久久乱码6080| 亚洲第一主播视频| 一区二区精品在线观看| 欧美丝袜一区二区三区| 狠狠色狠狠色综合日日五| 久久精品女人的天堂av| 亚洲精品国产品国语在线app| 亚洲欧美日韩成人高清在线一区| 亚洲日韩中文字幕在线播放| 欧美日韩p片| 久久婷婷久久一区二区三区| 91久久黄色| 亚洲一区二区三区四区中文| 欧美一区二区三区在线| 久久精品一区二区三区不卡| 日韩亚洲欧美精品| 激情成人在线视频| 国产日本精品| 激情国产一区二区| 国产精品久久福利| a4yy欧美一区二区三区| 一本色道久久99精品综合| 狠久久av成人天堂| 国产日韩精品一区二区浪潮av| 一区二区免费在线播放| 一区二区亚洲精品国产| 国产一区二区精品久久| 欧美成人首页| 亚洲盗摄视频| 在线精品视频一区二区| 国产精品一区二区三区久久久| 国产区在线观看成人精品| 欧美女同视频| 久久精品五月| 国产精品久久久久久久久久免费| 亚洲欧美成人网| 一区二区三区av| 欧美色欧美亚洲另类二区| 欧美精品免费观看二区| 国产在线成人| 久久精品av麻豆的观看方式| 国产日韩欧美亚洲一区| 国产欧美va欧美不卡在线| 欧美日韩免费一区二区三区视频| 欧美一区二区精品久久911| 国产区二精品视| 国产一区二区中文| 亚洲精品久久久蜜桃| 国产日韩欧美综合精品| 国产一区导航| 亚洲第一页自拍| 久久精品在线| 久久久亚洲欧洲日产国码αv| 美女任你摸久久| 国产九九精品视频| 狠狠综合久久av一区二区老牛| 欧美在线影院在线视频| 久久久久国产精品厨房| 欧美区视频在线观看| 欧美巨乳在线观看| 国产一区二区三区在线观看免费| 亚洲精品欧美激情| 国产精品资源在线观看| 欧美国产在线观看| 1204国产成人精品视频| 欧美一区二区三区在线视频| 亚洲日韩欧美视频| 国产精品美女久久久久av超清| 国产日韩欧美精品一区| 黄色一区二区在线观看| 久久精品在这里| 激情偷拍久久| 好看的日韩视频| 在线亚洲欧美| 你懂的一区二区| 激情综合色综合久久| 亚洲精品一二区| 亚洲制服欧美中文字幕中文字幕| 亚洲国产精品成人va在线观看| 久热精品在线| 91久久中文字幕| 欧美精品一区在线播放| 久久久青草青青国产亚洲免观| 亚洲一区二区三区在线看| 尤物在线观看一区| 久久国产日韩欧美| 午夜精品三级视频福利| 欧美激情精品久久久六区热门| 欧美视频观看一区| 国产无遮挡一区二区三区毛片日本| 亚洲欧美一区二区激情| 久久综合色影院| 狠狠色丁香婷婷综合| 久久亚洲私人国产精品va| 欧美日韩黄色一区二区| 欧美日韩视频在线一区二区观看视频| 韩国v欧美v日本v亚洲v| 亚洲小视频在线观看| 亚洲精品久久久久| 亚洲高清不卡| 亚洲成人在线视频网站| 国产精品sss| 久久久久久久久久久一区| 亚洲免费婷婷| 免费美女久久99| 欧美日韩在线视频观看| 亚洲激情视频在线观看| 卡一卡二国产精品| 久久露脸国产精品| 欧美日韩国产不卡在线看|